jaygala24 commited on
Commit
da982a1
·
1 Parent(s): 258faca

Create modeling_indictrans.py

Browse files
Files changed (1) hide show
  1. modeling_indictrans.py +1267 -0
modeling_indictrans.py ADDED
@@ -0,0 +1,1267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The IndicTrans2 Authors and AI4Bharat team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch IndicTrans model."""
16
+
17
+
18
+ import math
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.nn as nn
23
+ from torch.nn import functional as F
24
+
25
+ from transformers.activations import ACT2FN
26
+ from transformers.deepspeed import is_deepspeed_zero3_enabled
27
+ from transformers.modeling_outputs import (
28
+ BaseModelOutput,
29
+ BaseModelOutputWithPastAndCrossAttentions,
30
+ Seq2SeqLMOutput,
31
+ Seq2SeqModelOutput,
32
+ )
33
+
34
+ from transformers.utils import logging
35
+ from transformers.modeling_utils import PreTrainedModel
36
+
37
+ from .configuration_indictrans import IndicTransConfig
38
+
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+ _CONFIG_FOR_DOC = "IndicTransConfig"
43
+
44
+ INDICTRANS_PRETRAINED_MODEL_ARCHIVE_LIST = [""]
45
+
46
+
47
+ # Copied from transformers.models.bart.modeling_bart.shift_tokens_right
48
+ def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
49
+ """
50
+ Shift input ids one token to the right.
51
+ """
52
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
53
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
54
+ shifted_input_ids[:, 0] = decoder_start_token_id
55
+
56
+ if pad_token_id is None:
57
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
58
+ # replace possible -100 values in labels by `pad_token_id`
59
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
60
+
61
+ return shifted_input_ids
62
+
63
+
64
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
65
+ def _make_causal_mask(
66
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
67
+ ):
68
+ """
69
+ Make causal mask used for bi-directional self-attention.
70
+ """
71
+ bsz, tgt_len = input_ids_shape
72
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
73
+ mask_cond = torch.arange(mask.size(-1), device=device)
74
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
75
+ mask = mask.to(dtype)
76
+
77
+ if past_key_values_length > 0:
78
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
79
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
80
+
81
+
82
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
83
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
84
+ """
85
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
86
+ """
87
+ bsz, src_len = mask.size()
88
+ tgt_len = tgt_len if tgt_len is not None else src_len
89
+
90
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
91
+
92
+ inverted_mask = 1.0 - expanded_mask
93
+
94
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
95
+
96
+
97
+ def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
98
+ """
99
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
100
+ are ignored. This is modified from fairseq's `utils.make_positions`.
101
+ """
102
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
103
+ mask = input_ids.ne(padding_idx).int()
104
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
105
+ return incremental_indices.long() + padding_idx
106
+
107
+
108
+ # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding->IndicTrans
109
+ class IndicTransSinusoidalPositionalEmbedding(nn.Module):
110
+ """This module produces sinusoidal positional embeddings of any length."""
111
+
112
+ def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
113
+ super().__init__()
114
+ self.offset = 2
115
+ self.embedding_dim = embedding_dim
116
+ self.padding_idx = padding_idx
117
+ self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
118
+
119
+ def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
120
+ emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
121
+ if hasattr(self, "weights"):
122
+ # in forward put the weights on the correct dtype and device of the param
123
+ emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
124
+
125
+ self.register_buffer("weights", emb_weights, persistent=False)
126
+
127
+ @staticmethod
128
+ def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
129
+ """
130
+ Build sinusoidal embeddings.
131
+
132
+ This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
133
+ "Attention Is All You Need".
134
+ """
135
+ half_dim = embedding_dim // 2
136
+ emb = math.log(10000) / (half_dim - 1)
137
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
138
+ emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
139
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
140
+ if embedding_dim % 2 == 1:
141
+ # zero pad
142
+ emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
143
+ if padding_idx is not None:
144
+ emb[padding_idx, :] = 0
145
+
146
+ return emb.to(torch.get_default_dtype())
147
+
148
+ @torch.no_grad()
149
+ def forward(
150
+ self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
151
+ ):
152
+ if input_ids is not None:
153
+ bsz, seq_len = input_ids.size()
154
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
155
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
156
+ input_ids.device
157
+ )
158
+ else:
159
+ bsz, seq_len = inputs_embeds.size()[:-1]
160
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
161
+
162
+ # expand embeddings if needed
163
+ max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
164
+ if max_pos > self.weights.size(0):
165
+ self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
166
+
167
+ return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
168
+
169
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
170
+ """
171
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
172
+
173
+ Args:
174
+ inputs_embeds: torch.Tensor
175
+
176
+ Returns: torch.Tensor
177
+ """
178
+ input_shape = inputs_embeds.size()[:-1]
179
+ sequence_length = input_shape[1]
180
+
181
+ position_ids = torch.arange(
182
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
183
+ )
184
+ return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
185
+
186
+
187
+ # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->IndicTrans
188
+ class IndicTransAttention(nn.Module):
189
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
190
+
191
+ def __init__(
192
+ self,
193
+ embed_dim: int,
194
+ num_heads: int,
195
+ dropout: float = 0.0,
196
+ is_decoder: bool = False,
197
+ bias: bool = True,
198
+ ):
199
+ super().__init__()
200
+ self.embed_dim = embed_dim
201
+ self.num_heads = num_heads
202
+ self.dropout = dropout
203
+ self.head_dim = embed_dim // num_heads
204
+
205
+ if (self.head_dim * num_heads) != self.embed_dim:
206
+ raise ValueError(
207
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
208
+ f" and `num_heads`: {num_heads})."
209
+ )
210
+ self.scaling = self.head_dim**-0.5
211
+ self.is_decoder = is_decoder
212
+
213
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
214
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
215
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
216
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
217
+
218
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
219
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
220
+
221
+ def forward(
222
+ self,
223
+ hidden_states: torch.Tensor,
224
+ key_value_states: Optional[torch.Tensor] = None,
225
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
226
+ attention_mask: Optional[torch.Tensor] = None,
227
+ layer_head_mask: Optional[torch.Tensor] = None,
228
+ output_attentions: bool = False,
229
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
230
+ """Input shape: Batch x Time x Channel"""
231
+
232
+ # if key_value_states are provided this layer is used as a cross-attention layer
233
+ # for the decoder
234
+ is_cross_attention = key_value_states is not None
235
+
236
+ bsz, tgt_len, _ = hidden_states.size()
237
+
238
+ # get query proj
239
+ query_states = self.q_proj(hidden_states) * self.scaling
240
+ # get key, value proj
241
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
242
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
243
+ # the provided `key_value_states` to support prefix tuning
244
+ if (
245
+ is_cross_attention
246
+ and past_key_value is not None
247
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
248
+ ):
249
+ # reuse k,v, cross_attentions
250
+ key_states = past_key_value[0]
251
+ value_states = past_key_value[1]
252
+ elif is_cross_attention:
253
+ # cross_attentions
254
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
255
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
256
+ elif past_key_value is not None:
257
+ # reuse k, v, self_attention
258
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
259
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
260
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
261
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
262
+ else:
263
+ # self_attention
264
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
265
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
266
+
267
+ if self.is_decoder:
268
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
269
+ # Further calls to cross_attention layer can then reuse all cross-attention
270
+ # key/value_states (first "if" case)
271
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
272
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
273
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
274
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
275
+ past_key_value = (key_states, value_states)
276
+
277
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
278
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
279
+ key_states = key_states.reshape(*proj_shape)
280
+ value_states = value_states.reshape(*proj_shape)
281
+
282
+ src_len = key_states.size(1)
283
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
284
+
285
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
286
+ raise ValueError(
287
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
288
+ f" {attn_weights.size()}"
289
+ )
290
+
291
+ if attention_mask is not None:
292
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
293
+ raise ValueError(
294
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
295
+ )
296
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
297
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
298
+
299
+ attn_weights = F.softmax(attn_weights, dim=-1)
300
+
301
+ if layer_head_mask is not None:
302
+ if layer_head_mask.size() != (self.num_heads,):
303
+ raise ValueError(
304
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
305
+ f" {layer_head_mask.size()}"
306
+ )
307
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
308
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
309
+
310
+ if output_attentions:
311
+ # this operation is a bit awkward, but it's required to
312
+ # make sure that attn_weights keeps its gradient.
313
+ # In order to do so, attn_weights have to be reshaped
314
+ # twice and have to be reused in the following
315
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
316
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
317
+ else:
318
+ attn_weights_reshaped = None
319
+
320
+ attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training)
321
+
322
+ attn_output = torch.bmm(attn_probs, value_states)
323
+
324
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
325
+ raise ValueError(
326
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
327
+ f" {attn_output.size()}"
328
+ )
329
+
330
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
331
+ attn_output = attn_output.transpose(1, 2)
332
+
333
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
334
+ # partitioned across GPUs when using tensor-parallelism.
335
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
336
+
337
+ attn_output = self.out_proj(attn_output)
338
+
339
+ return attn_output, attn_weights_reshaped, past_key_value
340
+
341
+
342
+ # Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->IndicTrans
343
+ class IndicTransEncoderLayer(nn.Module):
344
+ def __init__(self, config: IndicTransConfig):
345
+ super().__init__()
346
+ self.embed_dim = config.encoder_embed_dim
347
+ self.self_attn = IndicTransAttention(
348
+ embed_dim=self.embed_dim,
349
+ num_heads=config.encoder_attention_heads,
350
+ dropout=config.attention_dropout,
351
+ )
352
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
353
+ self.dropout = config.dropout
354
+ self.activation_fn = ACT2FN[config.activation_function]
355
+ self.activation_dropout = config.activation_dropout
356
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
357
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
358
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
359
+ self.normalize_before = config.encoder_normalize_before
360
+
361
+ def forward(
362
+ self,
363
+ hidden_states: torch.Tensor,
364
+ attention_mask: torch.Tensor,
365
+ layer_head_mask: torch.Tensor,
366
+ output_attentions: bool = False,
367
+ ) -> torch.Tensor:
368
+ """
369
+ Args:
370
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
371
+ attention_mask (`torch.FloatTensor`): attention mask of size
372
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
373
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
374
+ `(encoder_attention_heads,)`.
375
+ output_attentions (`bool`, *optional*):
376
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
377
+ returned tensors for more detail.
378
+ """
379
+ residual = hidden_states
380
+ if self.normalize_before:
381
+ hidden_states = self.self_attn_layer_norm(hidden_states)
382
+ hidden_states, attn_weights, _ = self.self_attn(
383
+ hidden_states=hidden_states,
384
+ attention_mask=attention_mask,
385
+ layer_head_mask=layer_head_mask,
386
+ output_attentions=output_attentions,
387
+ )
388
+ hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
389
+ hidden_states = residual + hidden_states
390
+ if not self.normalize_before:
391
+ hidden_states = self.self_attn_layer_norm(hidden_states)
392
+
393
+ residual = hidden_states
394
+ if self.normalize_before:
395
+ hidden_states = self.final_layer_norm(hidden_states)
396
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
397
+ hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training)
398
+ hidden_states = self.fc2(hidden_states)
399
+ hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
400
+ hidden_states = residual + hidden_states
401
+ if not self.normalize_before:
402
+ hidden_states = self.final_layer_norm(hidden_states)
403
+
404
+ if hidden_states.dtype == torch.float16 and (
405
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
406
+ ):
407
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
408
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
409
+
410
+ outputs = (hidden_states,)
411
+
412
+ if output_attentions:
413
+ outputs += (attn_weights,)
414
+
415
+ return outputs
416
+
417
+
418
+ # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->IndicTrans
419
+ class IndicTransDecoderLayer(nn.Module):
420
+ def __init__(self, config: IndicTransConfig):
421
+ super().__init__()
422
+ self.embed_dim = config.decoder_embed_dim
423
+
424
+ self.self_attn = IndicTransAttention(
425
+ embed_dim=self.embed_dim,
426
+ num_heads=config.decoder_attention_heads,
427
+ dropout=config.attention_dropout,
428
+ is_decoder=True,
429
+ )
430
+ self.dropout = config.dropout
431
+ self.activation_fn = ACT2FN[config.activation_function]
432
+ self.activation_dropout = config.activation_dropout
433
+
434
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
435
+ self.encoder_attn = IndicTransAttention(
436
+ self.embed_dim,
437
+ config.decoder_attention_heads,
438
+ dropout=config.attention_dropout,
439
+ is_decoder=True,
440
+ )
441
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
442
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
443
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
444
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
445
+ self.normalize_before = config.decoder_normalize_before
446
+
447
+ def forward(
448
+ self,
449
+ hidden_states: torch.Tensor,
450
+ attention_mask: Optional[torch.Tensor] = None,
451
+ encoder_hidden_states: Optional[torch.Tensor] = None,
452
+ encoder_attention_mask: Optional[torch.Tensor] = None,
453
+ layer_head_mask: Optional[torch.Tensor] = None,
454
+ cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
455
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
456
+ output_attentions: Optional[bool] = False,
457
+ use_cache: Optional[bool] = True,
458
+ ) -> torch.Tensor:
459
+ """
460
+ Args:
461
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
462
+ attention_mask (`torch.FloatTensor`): attention mask of size
463
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
464
+ encoder_hidden_states (`torch.FloatTensor`):
465
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
466
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
467
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
468
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
469
+ `(encoder_attention_heads,)`.
470
+ cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
471
+ size `(decoder_attention_heads,)`.
472
+ past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
473
+ output_attentions (`bool`, *optional*):
474
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
475
+ returned tensors for more detail.
476
+ """
477
+ residual = hidden_states
478
+ if self.normalize_before:
479
+ hidden_states = self.self_attn_layer_norm(hidden_states)
480
+
481
+ # Self Attention
482
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
483
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
484
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
485
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
486
+ hidden_states=hidden_states,
487
+ past_key_value=self_attn_past_key_value,
488
+ attention_mask=attention_mask,
489
+ layer_head_mask=layer_head_mask,
490
+ output_attentions=output_attentions,
491
+ )
492
+ hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
493
+ hidden_states = residual + hidden_states
494
+ if not self.normalize_before:
495
+ hidden_states = self.self_attn_layer_norm(hidden_states)
496
+
497
+ # Cross-Attention Block
498
+ cross_attn_present_key_value = None
499
+ cross_attn_weights = None
500
+ if encoder_hidden_states is not None:
501
+ residual = hidden_states
502
+ if self.normalize_before:
503
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
504
+
505
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
506
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
507
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
508
+ hidden_states=hidden_states,
509
+ key_value_states=encoder_hidden_states,
510
+ attention_mask=encoder_attention_mask,
511
+ layer_head_mask=cross_attn_layer_head_mask,
512
+ past_key_value=cross_attn_past_key_value,
513
+ output_attentions=output_attentions,
514
+ )
515
+ hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
516
+ hidden_states = residual + hidden_states
517
+ if not self.normalize_before:
518
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
519
+
520
+ # add cross-attn to positions 3,4 of present_key_value tuple
521
+ present_key_value = present_key_value + cross_attn_present_key_value
522
+
523
+ # Fully Connected
524
+ residual = hidden_states
525
+ if self.normalize_before:
526
+ hidden_states = self.final_layer_norm(hidden_states)
527
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
528
+ hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training)
529
+ hidden_states = self.fc2(hidden_states)
530
+ hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
531
+ hidden_states = residual + hidden_states
532
+ if not self.normalize_before:
533
+ hidden_states = self.final_layer_norm(hidden_states)
534
+
535
+ outputs = (hidden_states,)
536
+
537
+ if output_attentions:
538
+ outputs += (self_attn_weights, cross_attn_weights)
539
+
540
+ if use_cache:
541
+ outputs += (present_key_value,)
542
+
543
+ return outputs
544
+
545
+
546
+ # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100PretrainedModel->IndicTrans
547
+ class IndicTransPreTrainedModel(PreTrainedModel):
548
+ config_class = IndicTransConfig
549
+ base_model_prefix = "model"
550
+ supports_gradient_checkpointing = True
551
+ _no_split_modules = ["IndicTransAttention"]
552
+
553
+ def _init_weights(self, module):
554
+ std = self.config.init_std
555
+ if isinstance(module, nn.Linear):
556
+ module.weight.data.normal_(mean=0.0, std=std)
557
+ if module.bias is not None:
558
+ module.bias.data.zero_()
559
+ elif isinstance(module, nn.Embedding):
560
+ module.weight.data.normal_(mean=0.0, std=std)
561
+ if module.padding_idx is not None:
562
+ module.weight.data[module.padding_idx].zero_()
563
+
564
+ def _set_gradient_checkpointing(self, module, value=False):
565
+ if isinstance(module, (IndicTransDecoder, IndicTransEncoder)):
566
+ module.gradient_checkpointing = value
567
+
568
+
569
+ # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100EncoderLayer->IndicTrans
570
+ class IndicTransEncoder(IndicTransPreTrainedModel):
571
+ """
572
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
573
+ [`IndicTransEncoderLayer`].
574
+
575
+ Args:
576
+ config: IndicTransConfig
577
+ embed_tokens (nn.Embedding): output embedding
578
+ """
579
+
580
+ def __init__(self, config: IndicTransConfig, embed_tokens: Optional[nn.Embedding] = None):
581
+ super().__init__(config)
582
+
583
+ self.dropout = config.dropout
584
+ self.layerdrop = config.encoder_layerdrop
585
+
586
+ embed_dim = config.encoder_embed_dim
587
+ self.padding_idx = config.pad_token_id
588
+ self.max_source_positions = config.max_source_positions
589
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
590
+
591
+ self.embed_tokens = nn.Embedding(config.encoder_vocab_size, embed_dim, self.padding_idx)
592
+
593
+ if embed_tokens is not None:
594
+ self.embed_tokens.weight = embed_tokens.weight
595
+
596
+ self.embed_positions = IndicTransSinusoidalPositionalEmbedding(
597
+ config.max_source_positions,
598
+ embed_dim,
599
+ self.padding_idx,
600
+ )
601
+ self.layers = nn.ModuleList([IndicTransEncoderLayer(config) for _ in range(config.encoder_layers)])
602
+ self.layer_norm = nn.LayerNorm(embed_dim) if config.encoder_normalize_before else None
603
+ self.layernorm_embedding = nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
604
+
605
+ self.gradient_checkpointing = False
606
+ # Initialize weights and apply final processing
607
+ self.post_init()
608
+
609
+ def forward(
610
+ self,
611
+ input_ids: Optional[torch.Tensor] = None,
612
+ attention_mask: Optional[torch.Tensor] = None,
613
+ head_mask: Optional[torch.Tensor] = None,
614
+ inputs_embeds: Optional[torch.Tensor] = None,
615
+ output_attentions: Optional[bool] = None,
616
+ output_hidden_states: Optional[bool] = None,
617
+ return_dict: Optional[bool] = None,
618
+ ):
619
+ r"""
620
+ Args:
621
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
622
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
623
+ provide it.
624
+
625
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
626
+ [`PreTrainedTokenizer.__call__`] for details.
627
+
628
+ [What are input IDs?](../glossary#input-ids)
629
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
630
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
631
+
632
+ - 1 for tokens that are **not masked**,
633
+ - 0 for tokens that are **masked**.
634
+
635
+ [What are attention masks?](../glossary#attention-mask)
636
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
637
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
638
+
639
+ - 1 indicates the head is **not masked**,
640
+ - 0 indicates the head is **masked**.
641
+
642
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
643
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
644
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
645
+ than the model's internal embedding lookup matrix.
646
+ output_attentions (`bool`, *optional*):
647
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
648
+ returned tensors for more detail.
649
+ output_hidden_states (`bool`, *optional*):
650
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
651
+ for more detail.
652
+ return_dict (`bool`, *optional*):
653
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
654
+ """
655
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
656
+ output_hidden_states = (
657
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
658
+ )
659
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
660
+
661
+ # retrieve input_ids and inputs_embeds
662
+ if input_ids is not None and inputs_embeds is not None:
663
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
664
+ elif input_ids is not None:
665
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
666
+ input_shape = input_ids.size()
667
+ input_ids = input_ids.view(-1, input_shape[-1])
668
+ elif inputs_embeds is not None:
669
+ input_shape = inputs_embeds.size()[:-1]
670
+ else:
671
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
672
+
673
+ if inputs_embeds is None:
674
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
675
+
676
+ embed_pos = self.embed_positions(input_ids, inputs_embeds)
677
+ embed_pos = embed_pos.to(inputs_embeds.device)
678
+
679
+ hidden_states = inputs_embeds + embed_pos
680
+ if self.layernorm_embedding is not None:
681
+ x = self.layernorm_embedding(hidden_states)
682
+ hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
683
+
684
+ # expand attention_mask
685
+ if attention_mask is not None:
686
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
687
+ attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
688
+
689
+ encoder_states = () if output_hidden_states else None
690
+ all_attentions = () if output_attentions else None
691
+
692
+ # check if head_mask has a correct number of layers specified if desired
693
+ if head_mask is not None:
694
+ if head_mask.size()[0] != len(self.layers):
695
+ raise ValueError(
696
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
697
+ f" {head_mask.size()[0]}."
698
+ )
699
+ deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
700
+
701
+ for idx, encoder_layer in enumerate(self.layers):
702
+ if output_hidden_states:
703
+ encoder_states = encoder_states + (hidden_states,)
704
+
705
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
706
+ dropout_probability = torch.rand([])
707
+
708
+ skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
709
+ if not skip_the_layer or deepspeed_zero3_is_enabled:
710
+ # under deepspeed zero3 all gpus must run in sync
711
+
712
+ if self.gradient_checkpointing and self.training:
713
+ # create gradient checkpointing function
714
+ def create_custom_forward(module):
715
+ def custom_forward(*inputs):
716
+ return module(*inputs, output_attentions)
717
+
718
+ return custom_forward
719
+
720
+ layer_outputs = torch.utils.checkpoint.checkpoint(
721
+ create_custom_forward(encoder_layer),
722
+ hidden_states,
723
+ attention_mask,
724
+ (head_mask[idx] if head_mask is not None else None),
725
+ )
726
+ else:
727
+ layer_outputs = encoder_layer(
728
+ hidden_states,
729
+ attention_mask,
730
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
731
+ output_attentions=output_attentions,
732
+ )
733
+
734
+ hidden_states = layer_outputs[0]
735
+
736
+ if skip_the_layer:
737
+ layer_outputs = (None, None)
738
+
739
+ if output_attentions:
740
+ all_attentions = all_attentions + (layer_outputs[1],)
741
+
742
+ if self.layer_norm is not None:
743
+ hidden_states = self.layer_norm(hidden_states)
744
+
745
+ if output_hidden_states:
746
+ encoder_states = encoder_states + (hidden_states,)
747
+
748
+ if not return_dict:
749
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
750
+ return BaseModelOutput(
751
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
752
+ )
753
+
754
+
755
+ # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100DecoderLayer->IndicTrans
756
+ class IndicTransDecoder(IndicTransPreTrainedModel):
757
+ """
758
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`IndicTransDecoderLayer`]
759
+
760
+ Args:
761
+ config: IndicTransConfig
762
+ embed_tokens (nn.Embedding): output embedding
763
+ """
764
+
765
+ def __init__(self, config: IndicTransConfig, embed_tokens: Optional[nn.Embedding] = None):
766
+ super().__init__(config)
767
+ self.dropout = config.dropout
768
+ self.layerdrop = config.decoder_layerdrop
769
+
770
+ embed_dim = config.encoder_embed_dim
771
+ self.padding_idx = config.pad_token_id
772
+ self.max_target_positions = config.max_target_positions
773
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
774
+
775
+ self.embed_tokens = nn.Embedding(config.decoder_vocab_size, embed_dim, self.padding_idx)
776
+
777
+ if embed_tokens is not None:
778
+ self.embed_tokens.weight = embed_tokens.weight
779
+
780
+ self.embed_positions = IndicTransSinusoidalPositionalEmbedding(
781
+ config.max_target_positions,
782
+ embed_dim,
783
+ self.padding_idx,
784
+ )
785
+ self.layers = nn.ModuleList([IndicTransDecoderLayer(config) for _ in range(config.decoder_layers)])
786
+ self.layer_norm = nn.LayerNorm(embed_dim) if config.decoder_normalize_before else None
787
+ self.layernorm_embedding = nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
788
+
789
+ self.gradient_checkpointing = False
790
+ # Initialize weights and apply final processing
791
+ self.post_init()
792
+
793
+ def forward(
794
+ self,
795
+ input_ids: Optional[torch.Tensor] = None,
796
+ attention_mask: Optional[torch.Tensor] = None,
797
+ encoder_hidden_states: Optional[torch.Tensor] = None,
798
+ encoder_attention_mask: Optional[torch.Tensor] = None,
799
+ head_mask: Optional[torch.Tensor] = None,
800
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
801
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
802
+ inputs_embeds: Optional[torch.Tensor] = None,
803
+ use_cache: Optional[bool] = None,
804
+ output_attentions: Optional[bool] = None,
805
+ output_hidden_states: Optional[bool] = None,
806
+ return_dict: Optional[bool] = None,
807
+ ):
808
+ r"""
809
+ Args:
810
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
811
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
812
+ provide it.
813
+
814
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
815
+ [`PreTrainedTokenizer.__call__`] for details.
816
+
817
+ [What are input IDs?](../glossary#input-ids)
818
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
819
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
820
+
821
+ - 1 for tokens that are **not masked**,
822
+ - 0 for tokens that are **masked**.
823
+
824
+ [What are attention masks?](../glossary#attention-mask)
825
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
826
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
827
+ of the decoder.
828
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
829
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
830
+ selected in `[0, 1]`:
831
+
832
+ - 1 for tokens that are **not masked**,
833
+ - 0 for tokens that are **masked**.
834
+
835
+ [What are attention masks?](../glossary#attention-mask)
836
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
837
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
838
+
839
+ - 1 indicates the head is **not masked**,
840
+ - 0 indicates the head is **masked**.
841
+
842
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
843
+ Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
844
+ cross-attention on hidden heads. Mask values selected in `[0, 1]`:
845
+
846
+ - 1 indicates the head is **not masked**,
847
+ - 0 indicates the head is **masked**.
848
+
849
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
850
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
851
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
852
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
853
+
854
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
855
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
856
+
857
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
858
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
859
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
860
+ shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
861
+ `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
862
+ control over how to convert `input_ids` indices into associated vectors than the model's internal
863
+ embedding lookup matrix.
864
+ output_attentions (`bool`, *optional*):
865
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
866
+ returned tensors for more detail.
867
+ output_hidden_states (`bool`, *optional*):
868
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
869
+ for more detail.
870
+ return_dict (`bool`, *optional*):
871
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
872
+ """
873
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
874
+ output_hidden_states = (
875
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
876
+ )
877
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
878
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
879
+
880
+ # retrieve input_ids and inputs_embeds
881
+ if input_ids is not None and inputs_embeds is not None:
882
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
883
+ elif input_ids is not None:
884
+ input_shape = input_ids.size()
885
+ input_ids = input_ids.view(-1, input_shape[-1])
886
+ elif inputs_embeds is not None:
887
+ input_shape = inputs_embeds.size()[:-1]
888
+ else:
889
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
890
+
891
+ # past_key_values_length
892
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
893
+
894
+ if inputs_embeds is None:
895
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
896
+
897
+ # create causal mask
898
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
899
+ combined_attention_mask = None
900
+ if input_shape[-1] > 1:
901
+ combined_attention_mask = _make_causal_mask(
902
+ input_shape,
903
+ inputs_embeds.dtype,
904
+ device=inputs_embeds.device,
905
+ past_key_values_length=past_key_values_length,
906
+ )
907
+
908
+ if attention_mask is not None and combined_attention_mask is not None:
909
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
910
+ combined_attention_mask = combined_attention_mask + _expand_mask(
911
+ attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
912
+ )
913
+
914
+ # expand encoder attention mask
915
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
916
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
917
+ encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
918
+
919
+ # embed positions
920
+ positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
921
+ positions = positions.to(inputs_embeds.device)
922
+
923
+ hidden_states = inputs_embeds + positions
924
+ if self.layernorm_embedding is not None:
925
+ hidden_states = self.layernorm_embedding(hidden_states)
926
+
927
+ hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
928
+
929
+ if self.gradient_checkpointing and self.training:
930
+ if use_cache:
931
+ logger.warning_once(
932
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
933
+ )
934
+ use_cache = False
935
+
936
+ # decoder layers
937
+ all_hidden_states = () if output_hidden_states else None
938
+ all_self_attns = () if output_attentions else None
939
+ all_cross_attentions = () if output_attentions else None
940
+ next_decoder_cache = () if use_cache else None
941
+
942
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
943
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
944
+ if attn_mask is not None:
945
+ if attn_mask.size()[0] != len(self.layers):
946
+ raise ValueError(
947
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
948
+ f" {head_mask.size()[0]}."
949
+ )
950
+ deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
951
+
952
+ for idx, decoder_layer in enumerate(self.layers):
953
+ if output_hidden_states:
954
+ all_hidden_states += (hidden_states,)
955
+
956
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
957
+ dropout_probability = torch.rand([])
958
+
959
+ skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
960
+ if not skip_the_layer or deepspeed_zero3_is_enabled:
961
+ # under deepspeed zero3 all gpus must run in sync
962
+
963
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
964
+
965
+ if self.gradient_checkpointing and self.training:
966
+
967
+ def create_custom_forward(module):
968
+ def custom_forward(*inputs):
969
+ # None for past_key_value
970
+ return module(*inputs, output_attentions, use_cache)
971
+
972
+ return custom_forward
973
+
974
+ layer_outputs = torch.utils.checkpoint.checkpoint(
975
+ create_custom_forward(decoder_layer),
976
+ hidden_states,
977
+ combined_attention_mask,
978
+ encoder_hidden_states,
979
+ encoder_attention_mask,
980
+ head_mask[idx] if head_mask is not None else None,
981
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
982
+ None,
983
+ )
984
+ else:
985
+ layer_outputs = decoder_layer(
986
+ hidden_states,
987
+ attention_mask=combined_attention_mask,
988
+ encoder_hidden_states=encoder_hidden_states,
989
+ encoder_attention_mask=encoder_attention_mask,
990
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
991
+ cross_attn_layer_head_mask=(
992
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
993
+ ),
994
+ past_key_value=past_key_value,
995
+ output_attentions=output_attentions,
996
+ use_cache=use_cache,
997
+ )
998
+
999
+ hidden_states = layer_outputs[0]
1000
+
1001
+ if skip_the_layer:
1002
+ continue
1003
+
1004
+ if use_cache:
1005
+ next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
1006
+
1007
+ if output_attentions:
1008
+ all_self_attns += (layer_outputs[1],)
1009
+ all_cross_attentions += (layer_outputs[2],)
1010
+
1011
+ if self.layer_norm is not None:
1012
+ hidden_states = self.layer_norm(hidden_states)
1013
+
1014
+ # add hidden states from the last decoder layer
1015
+ if output_hidden_states:
1016
+ all_hidden_states += (hidden_states,)
1017
+
1018
+ next_cache = next_decoder_cache if use_cache else None
1019
+ if not return_dict:
1020
+ return tuple(
1021
+ v
1022
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
1023
+ if v is not None
1024
+ )
1025
+ return BaseModelOutputWithPastAndCrossAttentions(
1026
+ last_hidden_state=hidden_states,
1027
+ past_key_values=next_cache,
1028
+ hidden_states=all_hidden_states,
1029
+ attentions=all_self_attns,
1030
+ cross_attentions=all_cross_attentions,
1031
+ )
1032
+
1033
+
1034
+ # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100Model->IndicTrans
1035
+ class IndicTransModel(IndicTransPreTrainedModel):
1036
+ _tied_weights_keys = None
1037
+
1038
+ def __init__(self, config: IndicTransConfig):
1039
+ super().__init__(config)
1040
+
1041
+ self.encoder = IndicTransEncoder(config)
1042
+ self.decoder = IndicTransDecoder(config)
1043
+
1044
+ # Initialize weights and apply final processing
1045
+ self.post_init()
1046
+
1047
+ def get_encoder(self):
1048
+ return self.encoder
1049
+
1050
+ def get_decoder(self):
1051
+ return self.decoder
1052
+
1053
+ def forward(
1054
+ self,
1055
+ input_ids: Optional[torch.LongTensor] = None,
1056
+ attention_mask: Optional[torch.Tensor] = None,
1057
+ decoder_input_ids: Optional[torch.LongTensor] = None,
1058
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
1059
+ head_mask: Optional[torch.Tensor] = None,
1060
+ decoder_head_mask: Optional[torch.Tensor] = None,
1061
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1062
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1063
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1064
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1065
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1066
+ use_cache: Optional[bool] = None,
1067
+ output_attentions: Optional[bool] = None,
1068
+ output_hidden_states: Optional[bool] = None,
1069
+ return_dict: Optional[bool] = None,
1070
+ ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
1071
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1072
+ output_hidden_states = (
1073
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1074
+ )
1075
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1076
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1077
+
1078
+ if encoder_outputs is None:
1079
+ encoder_outputs = self.encoder(
1080
+ input_ids=input_ids,
1081
+ attention_mask=attention_mask,
1082
+ head_mask=head_mask,
1083
+ inputs_embeds=inputs_embeds,
1084
+ output_attentions=output_attentions,
1085
+ output_hidden_states=output_hidden_states,
1086
+ return_dict=return_dict,
1087
+ )
1088
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
1089
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
1090
+ encoder_outputs = BaseModelOutput(
1091
+ last_hidden_state=encoder_outputs[0],
1092
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
1093
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
1094
+ )
1095
+
1096
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
1097
+ decoder_outputs = self.decoder(
1098
+ input_ids=decoder_input_ids,
1099
+ attention_mask=decoder_attention_mask,
1100
+ encoder_hidden_states=encoder_outputs[0],
1101
+ encoder_attention_mask=attention_mask,
1102
+ head_mask=decoder_head_mask,
1103
+ cross_attn_head_mask=cross_attn_head_mask,
1104
+ past_key_values=past_key_values,
1105
+ inputs_embeds=decoder_inputs_embeds,
1106
+ use_cache=use_cache,
1107
+ output_attentions=output_attentions,
1108
+ output_hidden_states=output_hidden_states,
1109
+ return_dict=return_dict,
1110
+ )
1111
+
1112
+ if not return_dict:
1113
+ return decoder_outputs + encoder_outputs
1114
+
1115
+ return Seq2SeqModelOutput(
1116
+ last_hidden_state=decoder_outputs.last_hidden_state,
1117
+ past_key_values=decoder_outputs.past_key_values,
1118
+ decoder_hidden_states=decoder_outputs.hidden_states,
1119
+ decoder_attentions=decoder_outputs.attentions,
1120
+ cross_attentions=decoder_outputs.cross_attentions,
1121
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
1122
+ encoder_hidden_states=encoder_outputs.hidden_states,
1123
+ encoder_attentions=encoder_outputs.attentions,
1124
+ )
1125
+
1126
+
1127
+ # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100ForConditionalGeneration->IndicTrans
1128
+ class IndicTransForConditionalGeneration(IndicTransPreTrainedModel):
1129
+ base_model_prefix = "model"
1130
+ _tied_weights_keys = None
1131
+
1132
+ def __init__(self, config: IndicTransConfig):
1133
+ super().__init__(config)
1134
+ self.model = IndicTransModel(config)
1135
+ self.lm_head = nn.Linear(config.decoder_embed_dim, config.decoder_vocab_size, bias=False)
1136
+
1137
+ if config.share_decoder_input_output_embed:
1138
+ self.lm_head.weight = self.model.decoder.embed_tokens.weight
1139
+
1140
+ self.post_init()
1141
+
1142
+ def tie_weights(self):
1143
+ pass
1144
+
1145
+ def get_encoder(self):
1146
+ return self.model.get_encoder()
1147
+
1148
+ def get_decoder(self):
1149
+ return self.model.get_decoder()
1150
+
1151
+ def get_output_embeddings(self):
1152
+ return self.lm_head
1153
+
1154
+ def set_output_embeddings(self, new_embeddings):
1155
+ self.lm_head = new_embeddings
1156
+
1157
+ def forward(
1158
+ self,
1159
+ input_ids: Optional[torch.LongTensor] = None,
1160
+ attention_mask: Optional[torch.Tensor] = None,
1161
+ decoder_input_ids: Optional[torch.LongTensor] = None,
1162
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
1163
+ head_mask: Optional[torch.Tensor] = None,
1164
+ decoder_head_mask: Optional[torch.Tensor] = None,
1165
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1166
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1167
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1168
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1169
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1170
+ labels: Optional[torch.LongTensor] = None,
1171
+ use_cache: Optional[bool] = None,
1172
+ output_attentions: Optional[bool] = None,
1173
+ output_hidden_states: Optional[bool] = None,
1174
+ return_dict: Optional[bool] = None,
1175
+ ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
1176
+ r"""
1177
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1178
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1179
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1180
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1181
+
1182
+ Returns:
1183
+ """
1184
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1185
+
1186
+ if labels is not None:
1187
+ if decoder_input_ids is None:
1188
+ decoder_input_ids = shift_tokens_right(
1189
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
1190
+ )
1191
+
1192
+ outputs = self.model(
1193
+ input_ids,
1194
+ attention_mask=attention_mask,
1195
+ decoder_input_ids=decoder_input_ids,
1196
+ encoder_outputs=encoder_outputs,
1197
+ decoder_attention_mask=decoder_attention_mask,
1198
+ head_mask=head_mask,
1199
+ decoder_head_mask=decoder_head_mask,
1200
+ cross_attn_head_mask=cross_attn_head_mask,
1201
+ past_key_values=past_key_values,
1202
+ inputs_embeds=inputs_embeds,
1203
+ decoder_inputs_embeds=decoder_inputs_embeds,
1204
+ use_cache=use_cache,
1205
+ output_attentions=output_attentions,
1206
+ output_hidden_states=output_hidden_states,
1207
+ return_dict=return_dict,
1208
+ )
1209
+ lm_logits = self.lm_head(outputs[0])
1210
+
1211
+ masked_lm_loss = None
1212
+ if labels is not None:
1213
+ # move labels to the correct device to enable PP
1214
+ labels = labels.to(lm_logits.device)
1215
+ loss_fct = nn.CrossEntropyLoss()
1216
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
1217
+
1218
+ if not return_dict:
1219
+ output = (lm_logits,) + outputs[1:]
1220
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1221
+
1222
+ return Seq2SeqLMOutput(
1223
+ loss=masked_lm_loss,
1224
+ logits=lm_logits,
1225
+ past_key_values=outputs.past_key_values,
1226
+ decoder_hidden_states=outputs.decoder_hidden_states,
1227
+ decoder_attentions=outputs.decoder_attentions,
1228
+ cross_attentions=outputs.cross_attentions,
1229
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
1230
+ encoder_hidden_states=outputs.encoder_hidden_states,
1231
+ encoder_attentions=outputs.encoder_attentions,
1232
+ )
1233
+
1234
+ def prepare_inputs_for_generation(
1235
+ self,
1236
+ decoder_input_ids,
1237
+ past_key_values=None,
1238
+ attention_mask=None,
1239
+ head_mask=None,
1240
+ decoder_head_mask=None,
1241
+ cross_attn_head_mask=None,
1242
+ use_cache=None,
1243
+ encoder_outputs=None,
1244
+ **kwargs,
1245
+ ):
1246
+ # cut decoder_input_ids if past is used
1247
+ if past_key_values is not None:
1248
+ decoder_input_ids = decoder_input_ids[:, -1:]
1249
+
1250
+ return {
1251
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
1252
+ "encoder_outputs": encoder_outputs,
1253
+ "past_key_values": past_key_values,
1254
+ "decoder_input_ids": decoder_input_ids,
1255
+ "attention_mask": attention_mask,
1256
+ "head_mask": head_mask,
1257
+ "decoder_head_mask": decoder_head_mask,
1258
+ "cross_attn_head_mask": cross_attn_head_mask,
1259
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
1260
+ }
1261
+
1262
+ @staticmethod
1263
+ def _reorder_cache(past_key_values, beam_idx):
1264
+ reordered_past = ()
1265
+ for layer_past in past_key_values:
1266
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
1267
+ return reordered_past