effi-7b / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
aa07be4 verified
|
raw
history blame
4.45 kB
metadata
license: apache-2.0
library_name: transformers
base_model: huggyllama/llama-7b
metrics:
  - accuracy
pipeline_tag: text-generation
model-index:
  - name: effi-7b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 55.12
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aiplanet/effi-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 78.07
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aiplanet/effi-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 35.91
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aiplanet/effi-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 39.71
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aiplanet/effi-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 72.53
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aiplanet/effi-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 3.18
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aiplanet/effi-7b
          name: Open LLM Leaderboard

effi 7b is a 7 billion parameter model built by AI Planet. Inspired by llama, we've built fine-tuned version of llama7b with qlora. The training procedure and framework versions are provided below along with model weighths.

Model Details

Model Description

This model has been fine-tuned on Chain of Thought datasets, which has context from mixed sources with corresponding rationale. The final finetuned Large Language Model(LLM) have shown enhanced capabilities of solving novel tasks by providing a reasoning.

  • Developed by: AI Planet
  • Model type: Casual Decoder only
  • Language(s) (NLP): English
  • License: Apache 2.0
  • Finetuned from model: Llama-2-7b-chat-hf

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.5.0.dev0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 47.42
AI2 Reasoning Challenge (25-Shot) 55.12
HellaSwag (10-Shot) 78.07
MMLU (5-Shot) 35.91
TruthfulQA (0-shot) 39.71
Winogrande (5-shot) 72.53
GSM8k (5-shot) 3.18