Whisper-Uzbek / README.md
blackhole33's picture
Update README.md
453cfa6 verified
|
raw
history blame
2.28 kB
metadata
license: apache-2.0
datasets:
  - mozilla-foundation/common_voice_17_0
language:
  - uz
metrics:
  - wer
library_name: transformers
pipeline_tag: automatic-speech-recognition

language: - uz license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Mediu, UZB - AISHA results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: uz split: None args: 'config: uz, split: test' metrics: - name: Wer type: wer value: 31.77905998468049

Whisper Medium UZB - AISHA

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2859
  • Wer: 31.7790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5187 0.5392 1000 0.4935 44.1403
0.3423 1.0785 2000 0.4008 37.6948
0.3018 1.6177 3000 0.3739 36.3575
0.2401 2.1569 4000 0.2821 31.7791

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1