File size: 5,534 Bytes
db792f0
 
 
7aaed1e
 
9b80327
 
e3491e3
7aaed1e
9b80327
7aaed1e
 
 
 
 
 
9b80327
 
7aaed1e
9b80327
7aaed1e
9b80327
7aaed1e
 
 
 
 
 
6c9ccc1
7aaed1e
 
11cc427
 
 
 
 
 
 
7aaed1e
 
 
 
 
 
 
 
 
b426412
 
 
 
 
bd8704b
b426412
2cddd1c
 
b426412
 
 
 
 
 
 
 
 
 
7aaed1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b98e50
9b80327
7aaed1e
11cc427
7aaed1e
b426412
55733e6
7aaed1e
9b80327
7aaed1e
b426412
 
7aaed1e
 
 
11cc427
7aaed1e
b426412
7aaed1e
 
 
ffbb13b
 
 
 
 
7aaed1e
 
2727655
7aaed1e
610d6e8
 
f9bb33e
 
 
 
 
 
 
 
2cddd1c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
license: mit
---
# SEA-LION

SEA-LION is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
The size of the models range from 3 billion to 7 billion parameters.
This is the card for the SEA-LION 7B base model.

SEA-LION stands for <i>Southeast Asian Languages In One Network</i>.


## Model Details

### Model Description

The SEA-LION model is a significant leap forward in the field of Natural Language Processing,
specifically trained to understand the SEA regional context.

SEA-LION is built on the robust MPT architecture and has a vocabulary size of 256K.

For tokenization, the model employs our custom SEABPETokenizer, which is specially tailored for SEA languages, ensuring optimal model performance.

The training data for SEA-LION encompasses 980B tokens.

- **Developed by:** Products Pillar, AI Singapore
- **Funded by:** Singapore NRF
- **Model type:** Decoder
- **Languages:** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
- **License:** MIT License

### Performance Benchmarks

SEA-LION has an average performance on general tasks in English (as measured by Hugging Face's LLM Leaderboard):

| Model       | ARC   | HellaSwag | MMLU  | TruthfulQA | Average |
|-------------|:-----:|:---------:|:-----:|:----------:|:-------:|
| SEA-LION 7B | 39.93 | 68.51     | 26.87 |      35.09 | 42.60   |

## Training Details

### Data

SEA-LION was trained on 980B tokens of the following data:

| Data Source               | Tokens | Percentage |
|---------------------------|-------:|:----------:|
| RefinedWeb - English      | 571.3B |     58.20% |
| mC4 - Chinese             |  91.2B |      9.29% |
| mC4 - Indonesian          |  14.7B |      1.50% |
| mC4 - Malay               |   2.9B |      0.29% |
| mC4 - Filipino            |   5.3B |      0.54% |
| mC4 - Burmese             |   4.9B |      0.49% |
| mC4 - Vietnamese          |  63.4B |      6.46% |
| mC4 - Thai                |  11.6B |      1.18% |
| WangChanBERTa - Thai      |    10B |      1.02% |
| mC4 - Lao                 |   1.1B |      0.12% |
| mC4 - Khmer               |   3.9B |      0.40% |
| mC4 - Tamil               |  10.2B |      1.04% |
| the Stack - Python        |  41.8B |      4.26% |
| the Stack - Javascript    |  55.6B |      5.66% |
| the Stack - Shell         |   2.5B |      0.26% |
| the Stack - SQL           |  12.8B |      1.31% |
| the Stack - Markdown      |  26.6B |      2.71% |
| RedPajama - StackExchange |  21.2B |      2.16% |
| RedPajama - ArXiv         |  30.6B |      3.12% |

### Infrastructure

SEA-LION was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
on the following hardware:

| Training Details     | SEA-LION 7B  |
|----------------------|:------------:|
| AWS EC2 p4d.24xlarge | 32 instances |
| Nvidia A100 40GB GPU | 256          |
| Training Duration    | 22 days      |


### Configuration

| HyperParameter    | SEA-LION 7B        |
|-------------------|:------------------:|
| Precision         | bfloat16           |
| Optimizer         | decoupled_adamw    |
| Scheduler         | cosine_with_warmup |
| Learning Rate     | 6.0e-5             |
| Global Batch Size | 2048               |
| Micro Batch Size  | 4                  |


## Technical Specifications

### Model Architecture and Objective

SEA-LION is a decoder model using the MPT architecture.

| Parameter       | SEA-LION 7B |
|-----------------|:-----------:|
| Layers          | 32          |
| d_model         | 4096        |
| head_dim        | 32          |
| Vocabulary      | 256000      |
| Sequence Length | 2048        |


### Tokenizer Details

We sample 20M lines from the training data to train the tokenizer.<br>
The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
The tokenizer type is Byte-Pair Encoding (BPE).



## The Team

Lam Wen Zhi Clarence<br>
Leong Wei Qi<br>
Li Yier<br>
Liu Bing Jie Darius<br>
Lovenia Holy<br>
Montalan Jann Railey<br>
Ng Boon Cheong Raymond<br>
Ngui Jian Gang<br>
Nguyen Thanh Ngan<br>
Ong Tat-Wee David<br>
Rengarajan Hamsawardhini<br>
Susanto Yosephine<br>
Tai Ngee Chia<br>
Tan Choon Meng<br>
Teo Jin Howe<br>
Teo Eng Sipp Leslie<br>
Teo Wei Yi<br>
Tjhi William<br>
Yeo Yeow Tong<br>
Yong Xianbin<br>

## Acknowledgements

AI Singapore is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.

## Contact

For more info, please contact us at [email protected]

[Link to SEA-LION's GitHub repository](https://github.com/aisingapore/sealion)


## Disclaimer

This the repository for the base model.
The model has _not_ been aligned for safety.
Developers and users should perform their own safety fine-tuning and related security measures.
In no event shall the authors be held liable for any claim, damages, or other liability
arising from the use of the released weights and codes.

## Citations

```bibtex
@misc{lowphansirikul2021wangchanberta,
    title={WangchanBERTa: Pretraining transformer-based Thai Language Models},
    author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong},
    year={2021},
    eprint={2101.09635},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```