LPX55 commited on
Commit
8635999
·
verified ·
1 Parent(s): 14bff6c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -3
README.md CHANGED
@@ -13,11 +13,15 @@ base_model:
13
  ---
14
  # Model Card for ViT Deepfake Detector
15
 
 
 
 
 
16
  ## Model Details
17
  ### Model Description
18
- Vision Transformer (ViT) model fine-tuned for detecting AI-generated images in forensic applications.
19
 
20
- - **Developed by:** [Your Name/Organization]
21
  - **Model type:** Vision Transformer (ViT-Small)
22
  - **License:** MIT (compatible with CreativeML OpenRAIL-M referenced in [2411.04125v1.pdf])
23
  - **Finetuned from:** timm/vit_small_patch16_384.augreg_in21k_ft_in1k
@@ -31,7 +35,6 @@ Vision Transformer (ViT) model fine-tuned for detecting AI-generated images in f
31
  Detect AI-generated images in:
32
  - Content moderation pipelines
33
  - Digital forensic investigations
34
- - Media authenticity verification
35
 
36
  ## Bias, Risks, and Limitations
37
  - **Performance variance:** Accuracy drops 15-20% on diffusion-generated images vs GAN-generated
@@ -41,6 +44,7 @@ Detect AI-generated images in:
41
 
42
 
43
  ## How to Use
 
44
  ```python
45
  from transformers import ViTImageProcessor, ViTForImageClassification
46
 
 
13
  ---
14
  # Model Card for ViT Deepfake Detector
15
 
16
+ **Uploaded for community validation as part of OpenSight** - An upcoming open-source framework for adaptive deepfake detection, inspired by methodologies in <source_id data="2411.04125v1.pdf" />.
17
+
18
+ ### *Huggingface Spaces coming soon.*
19
+
20
  ## Model Details
21
  ### Model Description
22
+ Vision Transformer (ViT) model trained on the largest dataset to-date for detecting AI-generated images in forensic applications.
23
 
24
+ - **Developed by:** Jeongsoo Park and Andrew Owens, University of Michigan
25
  - **Model type:** Vision Transformer (ViT-Small)
26
  - **License:** MIT (compatible with CreativeML OpenRAIL-M referenced in [2411.04125v1.pdf])
27
  - **Finetuned from:** timm/vit_small_patch16_384.augreg_in21k_ft_in1k
 
35
  Detect AI-generated images in:
36
  - Content moderation pipelines
37
  - Digital forensic investigations
 
38
 
39
  ## Bias, Risks, and Limitations
40
  - **Performance variance:** Accuracy drops 15-20% on diffusion-generated images vs GAN-generated
 
44
 
45
 
46
  ## How to Use
47
+
48
  ```python
49
  from transformers import ViTImageProcessor, ViTForImageClassification
50