Update README.md
Browse files
README.md
CHANGED
@@ -13,11 +13,15 @@ base_model:
|
|
13 |
---
|
14 |
# Model Card for ViT Deepfake Detector
|
15 |
|
|
|
|
|
|
|
|
|
16 |
## Model Details
|
17 |
### Model Description
|
18 |
-
Vision Transformer (ViT) model
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
- **Model type:** Vision Transformer (ViT-Small)
|
22 |
- **License:** MIT (compatible with CreativeML OpenRAIL-M referenced in [2411.04125v1.pdf])
|
23 |
- **Finetuned from:** timm/vit_small_patch16_384.augreg_in21k_ft_in1k
|
@@ -31,7 +35,6 @@ Vision Transformer (ViT) model fine-tuned for detecting AI-generated images in f
|
|
31 |
Detect AI-generated images in:
|
32 |
- Content moderation pipelines
|
33 |
- Digital forensic investigations
|
34 |
-
- Media authenticity verification
|
35 |
|
36 |
## Bias, Risks, and Limitations
|
37 |
- **Performance variance:** Accuracy drops 15-20% on diffusion-generated images vs GAN-generated
|
@@ -41,6 +44,7 @@ Detect AI-generated images in:
|
|
41 |
|
42 |
|
43 |
## How to Use
|
|
|
44 |
```python
|
45 |
from transformers import ViTImageProcessor, ViTForImageClassification
|
46 |
|
|
|
13 |
---
|
14 |
# Model Card for ViT Deepfake Detector
|
15 |
|
16 |
+
**Uploaded for community validation as part of OpenSight** - An upcoming open-source framework for adaptive deepfake detection, inspired by methodologies in <source_id data="2411.04125v1.pdf" />.
|
17 |
+
|
18 |
+
### *Huggingface Spaces coming soon.*
|
19 |
+
|
20 |
## Model Details
|
21 |
### Model Description
|
22 |
+
Vision Transformer (ViT) model trained on the largest dataset to-date for detecting AI-generated images in forensic applications.
|
23 |
|
24 |
+
- **Developed by:** Jeongsoo Park and Andrew Owens, University of Michigan
|
25 |
- **Model type:** Vision Transformer (ViT-Small)
|
26 |
- **License:** MIT (compatible with CreativeML OpenRAIL-M referenced in [2411.04125v1.pdf])
|
27 |
- **Finetuned from:** timm/vit_small_patch16_384.augreg_in21k_ft_in1k
|
|
|
35 |
Detect AI-generated images in:
|
36 |
- Content moderation pipelines
|
37 |
- Digital forensic investigations
|
|
|
38 |
|
39 |
## Bias, Risks, and Limitations
|
40 |
- **Performance variance:** Accuracy drops 15-20% on diffusion-generated images vs GAN-generated
|
|
|
44 |
|
45 |
|
46 |
## How to Use
|
47 |
+
|
48 |
```python
|
49 |
from transformers import ViTImageProcessor, ViTForImageClassification
|
50 |
|