Uploaded model

  • Developed by: ak0327
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

How to use


def load_model(model_name):
  # QLoRA config
  bnb_config = BitsAndBytesConfig(
      load_in_4bit=True,
      bnb_4bit_quant_type="nf4",
      bnb_4bit_compute_dtype=torch.bfloat16,
      bnb_4bit_use_double_quant=False,
  )

  # Load model
  model = AutoModelForCausalLM.from_pretrained(
      model_name,
      quantization_config=bnb_config,
      device_map="auto",
      token=HF_TOKEN
  )

  # Load tokenizer
  tokenizer = AutoTokenizer.from_pretrained(
      model_name,
      trust_remote_code=True,
      token=HF_TOKEN
  )
  return model, tokenizer


def inference(datasets, model, tokenizer):
  _results = []
  for data in tqdm(datasets):
      input = data["input"]

      prompt = f"""### 指示
      {input}
      ### 回答:
      """

      encoded_input = tokenizer.encode_plus(
          prompt,
          add_special_tokens=False,
          return_tensors="pt",
          padding=True,
          truncation=True,
      ).to(model.device)

      tokenized_input = encoded_input["input_ids"]
      attention_mask = encoded_input["attention_mask"]

      with torch.no_grad():
          outputs = model.generate(
              tokenized_input,
              attention_mask=attention_mask,
              max_new_tokens=100,
              do_sample=False,
              repetition_penalty=1.2,
              pad_token_id=tokenizer.pad_token_id
          )[0]

      output = tokenizer.decode(
          outputs[tokenized_input.size(1):],
          skip_special_tokens=True
          )

      _results.append({
          "task_id": data["task_id"],
          "input": input,
          "output": output
      })
  return _results


model_name = "ak0327/llm-jp-3-13b-finetune-2"

model, tokenizer = load_model(model_name)
datasets = load_test_datasets()  # your datasets
results = inference(model_name, datasets, model, tokenizer)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for ak0327/llm-jp-3-13b-finetune-2

Finetuned
(1119)
this model