mt5-small-synthetic-data-plus-translated-bs32

This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8369
  • Rouge1: 0.6206
  • Rouge2: 0.4859
  • Rougel: 0.5972
  • Rougelsum: 0.5979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
19.4785 1.0 38 11.5404 0.0055 0.0008 0.0051 0.0051
11.9977 2.0 76 6.4079 0.0101 0.0015 0.0089 0.0094
7.5027 3.0 114 3.0626 0.0542 0.0093 0.0482 0.0487
4.8939 4.0 152 2.2496 0.0492 0.0182 0.0429 0.0437
3.64 5.0 190 1.7984 0.1870 0.0826 0.1598 0.1601
2.8662 6.0 228 1.4518 0.1852 0.0916 0.1653 0.1659
2.4493 7.0 266 1.3124 0.4183 0.2586 0.4014 0.4026
2.1362 8.0 304 1.2444 0.4386 0.2716 0.4176 0.4196
1.9923 9.0 342 1.1876 0.4587 0.3034 0.4387 0.4404
1.8438 10.0 380 1.1486 0.5198 0.3637 0.4979 0.4988
1.7212 11.0 418 1.1031 0.5402 0.3848 0.5160 0.5169
1.6315 12.0 456 1.0707 0.5556 0.3999 0.5325 0.5341
1.5623 13.0 494 1.0437 0.5808 0.4309 0.5583 0.5593
1.5269 14.0 532 1.0188 0.5986 0.4540 0.5773 0.5772
1.4668 15.0 570 0.9982 0.5922 0.4511 0.5731 0.5737
1.4357 16.0 608 0.9777 0.5965 0.4549 0.5768 0.5773
1.3684 17.0 646 0.9623 0.6123 0.4722 0.5901 0.5907
1.3675 18.0 684 0.9461 0.6135 0.4771 0.5915 0.5919
1.3285 19.0 722 0.9324 0.6150 0.4754 0.5916 0.5918
1.288 20.0 760 0.9271 0.6179 0.4803 0.5964 0.5968
1.2529 21.0 798 0.9129 0.6156 0.4789 0.5939 0.5940
1.2216 22.0 836 0.9017 0.6163 0.4817 0.5941 0.5941
1.2322 23.0 874 0.8948 0.6208 0.4839 0.5985 0.5986
1.2062 24.0 912 0.8838 0.6139 0.4778 0.5904 0.5912
1.1642 25.0 950 0.8761 0.6150 0.4818 0.5939 0.5951
1.1699 26.0 988 0.8759 0.6152 0.4794 0.5929 0.5932
1.1428 27.0 1026 0.8662 0.6158 0.4806 0.5935 0.5946
1.195 28.0 1064 0.8609 0.6126 0.4758 0.5898 0.5908
1.1619 29.0 1102 0.8568 0.6152 0.4776 0.5924 0.5936
1.1172 30.0 1140 0.8548 0.6181 0.4788 0.5951 0.5964
1.1141 31.0 1178 0.8526 0.6148 0.4766 0.5904 0.5914
1.1176 32.0 1216 0.8488 0.6201 0.4834 0.5963 0.5972
1.0959 33.0 1254 0.8475 0.6225 0.4847 0.5983 0.5993
1.0954 34.0 1292 0.8437 0.6220 0.4859 0.5987 0.5986
1.0844 35.0 1330 0.8420 0.6206 0.4851 0.5969 0.5974
1.1041 36.0 1368 0.8398 0.6222 0.4865 0.5991 0.5992
1.0736 37.0 1406 0.8386 0.6225 0.4867 0.5991 0.6001
1.0816 38.0 1444 0.8376 0.6229 0.4871 0.5994 0.6001
1.0537 39.0 1482 0.8372 0.6242 0.4876 0.6004 0.6013
1.092 40.0 1520 0.8369 0.6206 0.4859 0.5972 0.5979

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for ak2603/mt5-small-synthetic-data-plus-translated-bs32

Base model

google/mt5-small
Finetuned
(398)
this model