|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- wikimedia/wikipedia |
|
language: |
|
- id |
|
base_model: |
|
- openai-community/gpt2 |
|
--- |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers import TextStreamer |
|
|
|
model_name = "akahana/wikipedia-gpt2" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
wikipedia_prompt = """Artikel Wikipedia |
|
[[Judul]] |
|
{} |
|
|
|
|
|
[[Artikel]] |
|
{}""" |
|
|
|
|
|
title = "Hal Holbrook" |
|
prompt = wikipedia_prompt.format(title, "") |
|
|
|
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=512, |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
response |
|
``` |