models
This model is trained from scratch based on gpt2 on a dataset that includes 40% artificial variation sets. It achieves the following results on the evaluation set:
- Loss: 3.4132
- Accuracy: 0.1055
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
5.4919 | 0.0221 | 100 | 4.9232 | 0.0666 |
4.381 | 0.0442 | 200 | 4.5587 | 0.0778 |
4.1011 | 0.0663 | 300 | 4.3706 | 0.0836 |
3.9359 | 0.0884 | 400 | 4.2434 | 0.0910 |
3.8161 | 0.1105 | 500 | 4.1663 | 0.0884 |
3.713 | 0.1326 | 600 | 4.0792 | 0.0939 |
3.6528 | 0.1547 | 700 | 4.0379 | 0.0925 |
3.5841 | 0.1768 | 800 | 3.9787 | 0.0936 |
3.5107 | 0.1989 | 900 | 3.9410 | 0.0946 |
3.4819 | 0.2210 | 1000 | 3.9099 | 0.0937 |
3.4388 | 0.2431 | 1100 | 3.8965 | 0.0940 |
3.4286 | 0.2653 | 1200 | 3.8627 | 0.0947 |
3.39 | 0.2874 | 1300 | 3.8378 | 0.0951 |
3.3659 | 0.3095 | 1400 | 3.8112 | 0.0960 |
3.3106 | 0.3316 | 1500 | 3.7943 | 0.0961 |
3.289 | 0.3537 | 1600 | 3.7917 | 0.0963 |
3.2774 | 0.3758 | 1700 | 3.7344 | 0.0981 |
3.2522 | 0.3979 | 1800 | 3.7512 | 0.0966 |
3.2242 | 0.4200 | 1900 | 3.7253 | 0.0980 |
3.23 | 0.4421 | 2000 | 3.7178 | 0.0977 |
3.193 | 0.4642 | 2100 | 3.6704 | 0.1013 |
3.1785 | 0.4863 | 2200 | 3.6979 | 0.0978 |
3.1548 | 0.5084 | 2300 | 3.6605 | 0.0998 |
3.1462 | 0.5305 | 2400 | 3.6843 | 0.0993 |
3.1432 | 0.5526 | 2500 | 3.6521 | 0.0995 |
3.1122 | 0.5747 | 2600 | 3.6481 | 0.0992 |
3.099 | 0.5968 | 2700 | 3.6302 | 0.1003 |
3.0936 | 0.6189 | 2800 | 3.6259 | 0.1008 |
3.1073 | 0.6410 | 2900 | 3.6341 | 0.0999 |
3.0484 | 0.6631 | 3000 | 3.6255 | 0.0998 |
3.0754 | 0.6852 | 3100 | 3.6538 | 0.1006 |
3.0563 | 0.7073 | 3200 | 3.5784 | 0.1017 |
3.0552 | 0.7294 | 3300 | 3.6309 | 0.1007 |
3.042 | 0.7515 | 3400 | 3.6018 | 0.1011 |
3.0203 | 0.7737 | 3500 | 3.5722 | 0.1010 |
3.0342 | 0.7958 | 3600 | 3.6028 | 0.1007 |
3.0306 | 0.8179 | 3700 | 3.5744 | 0.1017 |
3.0146 | 0.8400 | 3800 | 3.5778 | 0.1020 |
2.9996 | 0.8621 | 3900 | 3.5687 | 0.1015 |
3.0084 | 0.8842 | 4000 | 3.5571 | 0.1021 |
3.0052 | 0.9063 | 4100 | 3.5482 | 0.1023 |
2.9913 | 0.9284 | 4200 | 3.5543 | 0.1021 |
2.9684 | 0.9505 | 4300 | 3.5561 | 0.1022 |
2.9816 | 0.9726 | 4400 | 3.5141 | 0.1026 |
2.9628 | 0.9947 | 4500 | 3.5097 | 0.1031 |
2.9465 | 1.0168 | 4600 | 3.5310 | 0.1024 |
2.9349 | 1.0389 | 4700 | 3.5224 | 0.1033 |
2.9144 | 1.0610 | 4800 | 3.5388 | 0.1031 |
2.9476 | 1.0831 | 4900 | 3.5327 | 0.1033 |
2.9228 | 1.1052 | 5000 | 3.5370 | 0.1032 |
2.9122 | 1.1273 | 5100 | 3.5189 | 0.1033 |
2.9151 | 1.1494 | 5200 | 3.5119 | 0.1037 |
2.907 | 1.1715 | 5300 | 3.5090 | 0.1032 |
2.9189 | 1.1936 | 5400 | 3.5097 | 0.1037 |
2.9065 | 1.2157 | 5500 | 3.5006 | 0.1038 |
2.9075 | 1.2378 | 5600 | 3.4733 | 0.1042 |
2.8725 | 1.2599 | 5700 | 3.4937 | 0.1040 |
2.884 | 1.2821 | 5800 | 3.4992 | 0.1036 |
2.918 | 1.3042 | 5900 | 3.4763 | 0.1040 |
2.8647 | 1.3263 | 6000 | 3.5051 | 0.1041 |
2.8706 | 1.3484 | 6100 | 3.4771 | 0.1040 |
2.881 | 1.3705 | 6200 | 3.5170 | 0.1039 |
2.8788 | 1.3926 | 6300 | 3.5088 | 0.1040 |
2.8865 | 1.4147 | 6400 | 3.4944 | 0.1040 |
2.8605 | 1.4368 | 6500 | 3.5082 | 0.1042 |
2.8764 | 1.4589 | 6600 | 3.4666 | 0.1041 |
2.8828 | 1.4810 | 6700 | 3.5027 | 0.1041 |
2.8522 | 1.5031 | 6800 | 3.4695 | 0.1044 |
2.8674 | 1.5252 | 6900 | 3.4941 | 0.1041 |
2.8239 | 1.5473 | 7000 | 3.4779 | 0.1043 |
2.8633 | 1.5694 | 7100 | 3.5005 | 0.1046 |
2.8383 | 1.5915 | 7200 | 3.5013 | 0.1046 |
2.8555 | 1.6136 | 7300 | 3.4846 | 0.1046 |
2.8497 | 1.6357 | 7400 | 3.4165 | 0.1071 |
2.857 | 1.6578 | 7500 | 3.4531 | 0.1054 |
2.8239 | 1.6799 | 7600 | 3.4938 | 0.1048 |
2.8145 | 1.7020 | 7700 | 3.4814 | 0.1050 |
2.8429 | 1.7241 | 7800 | 3.4734 | 0.1043 |
2.8146 | 1.7462 | 7900 | 3.4483 | 0.1048 |
2.8285 | 1.7683 | 8000 | 3.4382 | 0.1051 |
2.8254 | 1.7905 | 8100 | 3.4824 | 0.1049 |
2.8318 | 1.8126 | 8200 | 3.4698 | 0.1053 |
2.8299 | 1.8347 | 8300 | 3.4737 | 0.1045 |
2.8332 | 1.8568 | 8400 | 3.4688 | 0.1051 |
2.8274 | 1.8789 | 8500 | 3.4308 | 0.1054 |
2.8171 | 1.9010 | 8600 | 3.4647 | 0.1053 |
2.8355 | 1.9231 | 8700 | 3.4586 | 0.1047 |
2.8031 | 1.9452 | 8800 | 3.4529 | 0.1049 |
2.8234 | 1.9673 | 8900 | 3.4379 | 0.1053 |
2.8097 | 1.9894 | 9000 | 3.4536 | 0.1055 |
2.7828 | 2.0115 | 9100 | 3.4409 | 0.1055 |
2.8027 | 2.0336 | 9200 | 3.4506 | 0.1055 |
2.7836 | 2.0557 | 9300 | 3.4617 | 0.1053 |
2.7874 | 2.0778 | 9400 | 3.4509 | 0.1050 |
2.7894 | 2.0999 | 9500 | 3.4132 | 0.1055 |
2.7863 | 2.1220 | 9600 | 3.4198 | 0.1055 |
2.7663 | 2.1441 | 9700 | 3.4524 | 0.1054 |
2.7846 | 2.1662 | 9800 | 3.4518 | 0.1056 |
2.7985 | 2.1883 | 9900 | 3.4453 | 0.1054 |
2.7947 | 2.2104 | 10000 | 3.4307 | 0.1056 |
2.7946 | 2.2325 | 10100 | 3.4598 | 0.1055 |
2.783 | 2.2546 | 10200 | 3.4523 | 0.1055 |
2.7763 | 2.2767 | 10300 | 3.4441 | 0.1056 |
2.7786 | 2.2989 | 10400 | 3.4659 | 0.1052 |
2.7672 | 2.3210 | 10500 | 3.4527 | 0.1053 |
2.767 | 2.3431 | 10600 | 3.4608 | 0.1053 |
2.7972 | 2.3652 | 10700 | 3.4277 | 0.1060 |
2.7958 | 2.3873 | 10800 | 3.4488 | 0.1053 |
2.774 | 2.4094 | 10900 | 3.4499 | 0.1056 |
2.7802 | 2.4315 | 11000 | 3.4281 | 0.1056 |
2.7576 | 2.4536 | 11100 | 3.4363 | 0.1058 |
2.76 | 2.4757 | 11200 | 3.4393 | 0.1059 |
2.7792 | 2.4978 | 11300 | 3.4389 | 0.1056 |
2.7804 | 2.5199 | 11400 | 3.4378 | 0.1060 |
2.7804 | 2.5420 | 11500 | 3.4236 | 0.1062 |
2.7835 | 2.5641 | 11600 | 3.4372 | 0.1060 |
2.7444 | 2.5862 | 11700 | 3.4518 | 0.1058 |
2.7636 | 2.6083 | 11800 | 3.4181 | 0.1060 |
2.7675 | 2.6304 | 11900 | 3.4290 | 0.1057 |
2.7487 | 2.6525 | 12000 | 3.4279 | 0.1058 |
2.7529 | 2.6746 | 12100 | 3.4300 | 0.1058 |
2.7819 | 2.6967 | 12200 | 3.4153 | 0.1062 |
2.7595 | 2.7188 | 12300 | 3.4477 | 0.1058 |
2.7585 | 2.7409 | 12400 | 3.4171 | 0.1059 |
2.7367 | 2.7630 | 12500 | 3.4297 | 0.1059 |
2.7701 | 2.7851 | 12600 | 3.4184 | 0.1058 |
2.7811 | 2.8073 | 12700 | 3.4334 | 0.1059 |
2.768 | 2.8294 | 12800 | 3.4295 | 0.1062 |
2.7715 | 2.8515 | 12900 | 3.4443 | 0.1058 |
2.7479 | 2.8736 | 13000 | 3.4344 | 0.1057 |
2.7479 | 2.8957 | 13100 | 3.4395 | 0.1059 |
2.7688 | 2.9178 | 13200 | 3.4270 | 0.1058 |
2.7708 | 2.9399 | 13300 | 3.4311 | 0.1059 |
2.7443 | 2.9620 | 13400 | 3.4314 | 0.1059 |
2.7428 | 2.9841 | 13500 | 3.4300 | 0.1059 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3,061
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for akari000/gpt-2-artificial-vss-40
Base model
openai-community/gpt2