|
--- |
|
language: sq |
|
widget: |
|
- text: "Varianti AY.4.2 është më i lehtë për t'u transmetuar, thotë Francois Balu, drejtor i Institutit të Gjenetikës në Londër." |
|
--- |
|
# Albanian Named Entity Recognition (NER) Model |
|
This model is the fine-tuned model of "bert-base-multilingual-cased" |
|
using the famous WikiANN dataset presented |
|
in the "Cross-lingual Name Tagging and Linking for 282 Languages" [paper](https://aclanthology.org/P17-1178.pdf). |
|
# Fine-tuning parameters: |
|
``` |
|
task = "ner" |
|
model_checkpoint = "bert-base-multilingual-cased" |
|
batch_size = 8 |
|
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] |
|
max_length = 512 |
|
learning_rate = 2e-5 |
|
num_train_epochs = 3 |
|
weight_decay = 0.01 |
|
``` |
|
# How to use: |
|
``` |
|
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/mbert-base-albanian-cased-ner") |
|
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/mbert-base-albanian-cased-ner") |
|
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") |
|
ner("<your text here>") |
|
``` |
|
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. |
|
# Reference test results: |
|
* accuracy: 0.9719268816143276 |
|
* f1: 0.9192366826444787 |
|
* precision: 0.9171629669734704 |
|
* recall: 0.9213197969543148 |
|
|