sample use
import json
from tqdm import tqdm
import sys
import os
import openai
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
) # for exponential backoff
from tqdm import tqdm
from datasets import load_dataset
import torch
from unsloth import FastLanguageModel
def main():
model_name = "aki916/llm-jp-3-13b-it-v1.2"
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = model_name,
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model)
# データセットの読み込み。
datasets = []
with open("data/elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# 推論
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
# jsonlで保存
with open(f"{model_name.replace('/', '_', -1)}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
print('finish dump')
print(f"{model_name.replace('/', '_', -1)}_output.jsonl")
if __name__ == "__main__":
main()
Uploaded model
- Developed by: aki916
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for aki916/llm-jp-3-13b-it-v1.2
Base model
llm-jp/llm-jp-3-13b