|
|
|
|
|
from itertools import cycle
|
|
|
|
import cv2
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
|
from matplotlib.figure import Figure
|
|
|
|
from ultralytics.solutions.solutions import BaseSolution
|
|
|
|
|
|
class Analytics(BaseSolution):
|
|
"""A class to create and update various types of charts (line, bar, pie, area) for visual analytics."""
|
|
|
|
def __init__(self, **kwargs):
|
|
"""Initialize the Analytics class with various chart types."""
|
|
super().__init__(**kwargs)
|
|
|
|
self.type = self.CFG["analytics_type"]
|
|
self.x_label = "Classes" if self.type in {"bar", "pie"} else "Frame#"
|
|
self.y_label = "Total Counts"
|
|
|
|
|
|
self.bg_color = "#00F344"
|
|
self.fg_color = "#111E68"
|
|
self.title = "Ultralytics Solutions"
|
|
self.max_points = 45
|
|
self.fontsize = 25
|
|
figsize = (19.2, 10.8)
|
|
self.color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"])
|
|
|
|
self.total_counts = 0
|
|
self.clswise_count = {}
|
|
|
|
|
|
if self.type in {"line", "area"}:
|
|
self.lines = {}
|
|
self.fig = Figure(facecolor=self.bg_color, figsize=figsize)
|
|
self.canvas = FigureCanvas(self.fig)
|
|
self.ax = self.fig.add_subplot(111, facecolor=self.bg_color)
|
|
if self.type == "line":
|
|
(self.line,) = self.ax.plot([], [], color="cyan", linewidth=self.line_width)
|
|
elif self.type in {"bar", "pie"}:
|
|
|
|
self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color)
|
|
self.canvas = FigureCanvas(self.fig)
|
|
self.ax.set_facecolor(self.bg_color)
|
|
self.color_mapping = {}
|
|
self.ax.axis("equal") if type == "pie" else None
|
|
|
|
def process_data(self, im0, frame_number):
|
|
"""
|
|
Process the image data, run object tracking.
|
|
|
|
Args:
|
|
im0 (ndarray): Input image for processing.
|
|
frame_number (int): Video frame # for plotting the data.
|
|
"""
|
|
self.extract_tracks(im0)
|
|
|
|
if self.type == "line":
|
|
for box in self.boxes:
|
|
self.total_counts += 1
|
|
im0 = self.update_graph(frame_number=frame_number)
|
|
self.total_counts = 0
|
|
elif self.type == "pie" or self.type == "bar" or self.type == "area":
|
|
self.clswise_count = {}
|
|
for box, cls in zip(self.boxes, self.clss):
|
|
if self.names[int(cls)] in self.clswise_count:
|
|
self.clswise_count[self.names[int(cls)]] += 1
|
|
else:
|
|
self.clswise_count[self.names[int(cls)]] = 1
|
|
im0 = self.update_graph(frame_number=frame_number, count_dict=self.clswise_count, plot=self.type)
|
|
else:
|
|
raise ModuleNotFoundError(f"{self.type} chart is not supported ❌")
|
|
return im0
|
|
|
|
def update_graph(self, frame_number, count_dict=None, plot="line"):
|
|
"""
|
|
Update the graph (line or area) with new data for single or multiple classes.
|
|
|
|
Args:
|
|
frame_number (int): The current frame number.
|
|
count_dict (dict, optional): Dictionary with class names as keys and counts as values for multiple classes.
|
|
If None, updates a single line graph.
|
|
plot (str): Type of the plot i.e. line, bar or area.
|
|
"""
|
|
if count_dict is None:
|
|
|
|
x_data = np.append(self.line.get_xdata(), float(frame_number))
|
|
y_data = np.append(self.line.get_ydata(), float(self.total_counts))
|
|
|
|
if len(x_data) > self.max_points:
|
|
x_data, y_data = x_data[-self.max_points :], y_data[-self.max_points :]
|
|
|
|
self.line.set_data(x_data, y_data)
|
|
self.line.set_label("Counts")
|
|
self.line.set_color("#7b0068")
|
|
self.line.set_marker("*")
|
|
self.line.set_markersize(self.line_width * 5)
|
|
else:
|
|
labels = list(count_dict.keys())
|
|
counts = list(count_dict.values())
|
|
if plot == "area":
|
|
color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"])
|
|
|
|
x_data = self.ax.lines[0].get_xdata() if self.ax.lines else np.array([])
|
|
y_data_dict = {key: np.array([]) for key in count_dict.keys()}
|
|
if self.ax.lines:
|
|
for line, key in zip(self.ax.lines, count_dict.keys()):
|
|
y_data_dict[key] = line.get_ydata()
|
|
|
|
x_data = np.append(x_data, float(frame_number))
|
|
max_length = len(x_data)
|
|
for key in count_dict.keys():
|
|
y_data_dict[key] = np.append(y_data_dict[key], float(count_dict[key]))
|
|
if len(y_data_dict[key]) < max_length:
|
|
y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key])), "constant")
|
|
if len(x_data) > self.max_points:
|
|
x_data = x_data[1:]
|
|
for key in count_dict.keys():
|
|
y_data_dict[key] = y_data_dict[key][1:]
|
|
|
|
self.ax.clear()
|
|
for key, y_data in y_data_dict.items():
|
|
color = next(color_cycle)
|
|
self.ax.fill_between(x_data, y_data, color=color, alpha=0.7)
|
|
self.ax.plot(
|
|
x_data,
|
|
y_data,
|
|
color=color,
|
|
linewidth=self.line_width,
|
|
marker="o",
|
|
markersize=self.line_width * 5,
|
|
label=f"{key} Data Points",
|
|
)
|
|
if plot == "bar":
|
|
self.ax.clear()
|
|
for label in labels:
|
|
if label not in self.color_mapping:
|
|
self.color_mapping[label] = next(self.color_cycle)
|
|
colors = [self.color_mapping[label] for label in labels]
|
|
bars = self.ax.bar(labels, counts, color=colors)
|
|
for bar, count in zip(bars, counts):
|
|
self.ax.text(
|
|
bar.get_x() + bar.get_width() / 2,
|
|
bar.get_height(),
|
|
str(count),
|
|
ha="center",
|
|
va="bottom",
|
|
color=self.fg_color,
|
|
)
|
|
|
|
for bar, label in zip(bars, labels):
|
|
bar.set_label(label)
|
|
self.ax.legend(loc="upper left", fontsize=13, facecolor=self.fg_color, edgecolor=self.fg_color)
|
|
if plot == "pie":
|
|
total = sum(counts)
|
|
percentages = [size / total * 100 for size in counts]
|
|
start_angle = 90
|
|
self.ax.clear()
|
|
|
|
|
|
wedges, autotexts = self.ax.pie(
|
|
counts, labels=labels, startangle=start_angle, textprops={"color": self.fg_color}, autopct=None
|
|
)
|
|
legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)]
|
|
|
|
|
|
self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
|
|
self.fig.subplots_adjust(left=0.1, right=0.75)
|
|
|
|
|
|
self.ax.set_facecolor("#f0f0f0")
|
|
self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize)
|
|
self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3)
|
|
self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3)
|
|
|
|
|
|
legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.bg_color)
|
|
for text in legend.get_texts():
|
|
text.set_color(self.fg_color)
|
|
|
|
|
|
self.ax.relim()
|
|
self.ax.autoscale_view()
|
|
self.canvas.draw()
|
|
im0 = np.array(self.canvas.renderer.buffer_rgba())
|
|
im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR)
|
|
self.display_output(im0)
|
|
|
|
return im0
|
|
|