alecmontero's picture
End of training
75dd851 verified
metadata
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: xlm-roberta-meta4types-ft-2.0
    results: []

xlm-roberta-meta4types-ft-2.0

This model is a fine-tuned version of cardiffnlp/twitter-xlm-roberta-base-sentiment on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0008
  • Roc Auc: 0.6612
  • Hamming Loss: 0.2239
  • F1 Score: 0.5943
  • Accuracy: 0.5392
  • Precision: 0.5798
  • Recall: 0.6121

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Roc Auc Hamming Loss F1 Score Accuracy Precision Recall
No log 1.0 204 0.5010 0.4988 0.2042 0.2930 0.6127 0.5948 0.3333
No log 2.0 408 0.5433 0.5027 0.2010 0.3038 0.6176 0.9281 0.3388
0.4958 3.0 612 0.5013 0.5043 0.2010 0.3139 0.6127 0.8170 0.3443
0.4958 4.0 816 0.6563 0.6108 0.2190 0.5211 0.5686 0.6488 0.4799
0.3484 5.0 1020 0.6404 0.6444 0.1912 0.5645 0.5980 0.6014 0.5386
0.3484 6.0 1224 0.9555 0.6520 0.2614 0.5559 0.5196 0.5889 0.5417
0.3484 7.0 1428 0.7919 0.6202 0.2222 0.5417 0.5392 0.5743 0.5297
0.1644 8.0 1632 0.8959 0.6389 0.2157 0.5551 0.5539 0.5823 0.5515
0.1644 9.0 1836 1.0008 0.6612 0.2239 0.5943 0.5392 0.5798 0.6121
0.0611 10.0 2040 0.9594 0.6452 0.2141 0.5822 0.5294 0.5757 0.5893

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1