gLM2 LoRA adapter for TATA promoter recognition

This model demonstrates the use of gLM2_150M embeddings for downstream classification. The model is fine-tuned using LoRA and obtains an F1 score of 98.11% on the TATA promoter task from the Nucleotide Transformer benchmarks.

How to Get Started with the Model

Use the code below to use the model for inference:

from peft import PeftModel
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoModel

glm2 = "tattabio/gLM2_150M"
adapter = "alejandralopezsosa/gLM2_150M-promoter_tata-lora"

load_kwargs = {
    'trust_remote_code': True,
    'torch_dtype': torch.bfloat16,
}

config = AutoConfig.from_pretrained(adapter, **load_kwargs)
base_model = AutoModelForSequenceClassification.from_config(config, **load_kwargs)
base_model.glm2 = AutoModel.from_pretrained("tattabio/gLM2_150M", **load_kwargs)

model = PeftModel.from_pretrained(base_model, adapter)
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for alejandralopezsosa/gLM2_150M-promoter_tata-lora

Base model

tattabio/gLM2_150M
Adapter
(1)
this model

Dataset used to train alejandralopezsosa/gLM2_150M-promoter_tata-lora

Evaluation results