File size: 16,393 Bytes
ea5bbeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
"""PyTorch gLM2 model.
Some modules adapted from:
https://github.com/meta-llama/llama/blob/main/llama/model.py
"""
import torch
from einops import rearrange, repeat
from typing import Optional, Tuple, Union
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_glm2 import gLM2Config
logger = logging.get_logger(__name__)
def rotate_half(x, interleaved=False):
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
)
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
"""
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
seqlen = x.shape[1]
cos, sin = cos[:seqlen], sin[:seqlen]
cos = repeat(
cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
)
sin = repeat(
sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
)
return torch.cat(
[
x[..., :ro_dim] * cos +
rotate_half(x[..., :ro_dim], interleaved) * sin,
x[..., ro_dim:],
],
dim=-1,
)
class RotaryEmbedding(torch.nn.Module):
"""
Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py.
Changed to use the torch version of apply_rotary_emb_func.
"""
def __init__(
self,
dim: int,
base=10000.0,
interleaved=False,
scale_base=None,
pos_idx_in_fp32=True,
device=None,
):
super().__init__()
self.dim = dim
self.base = float(base)
self.pos_idx_in_fp32 = pos_idx_in_fp32
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = self._compute_inv_freq(device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.interleaved = interleaved
self.scale_base = scale_base
scale = (
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
/ (1.4 * dim)
if scale_base is not None
else None
)
self.register_buffer("scale", scale, persistent=False)
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
def _compute_inv_freq(self, device=None):
return 1.0 / (
self.base
** (
torch.arange(0, self.dim, 2, device=device,
dtype=torch.float32)
/ self.dim
)
)
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
# Reset the tables if the sequence length has changed,
# if we're on a new device (possibly due to tracing for instance),
# or if we're switching from inference mode to training
if (
seqlen > self._seq_len_cached
or self._cos_cached is None
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
):
self._seq_len_cached = seqlen
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
# will be large. Having it in bf16 will lose a lot of precision and cause the
# cos & sin output to change significantly.
# We want to recompute self.inv_freq if it was not loaded in fp32
if self.inv_freq.dtype != torch.float32:
inv_freq = self._compute_inv_freq(device=device)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device,
dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
# Don't do einsum, it converts fp32 to fp16 under AMP
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(
seqlen, dtype=self.scale.dtype, device=self.scale.device
)
- seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** rearrange(
power, "s -> s 1"
)
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(
self,
qkv: torch.Tensor,
max_seqlen: Optional[int] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
qkv: (batch, seqlen, 3, nheads, headdim)
"""
seqlen = qkv.shape[1]
if seqlen > self._seq_len_cached:
self._update_cos_sin_cache(
seqlen, device=qkv.device, dtype=qkv.dtype)
elif max_seqlen is not None:
self._update_cos_sin_cache(
max_seqlen, device=qkv.device, dtype=qkv.dtype)
q_rot = apply_rotary_emb_torch(
qkv[:, :, 0], self._cos_cached, self._sin_cached, self.interleaved
)
k_rot = apply_rotary_emb_torch(
qkv[:, :, 1], self._cos_cached, self._sin_cached, self.interleaved
)
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
# @torch.jit.script
def rmsnorm_func(hidden_states, weight, variance_epsilon):
"""Apply the root mean square normalization."""
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
return (weight * hidden_states).to(input_dtype)
class RMSNorm(nn.Module):
"""Root mean square normalization."""
def __init__(self, dim, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.register_buffer(
"variance_epsilon",
torch.tensor(eps),
persistent=False,
)
def forward(self, hidden_states):
return rmsnorm_func(hidden_states, self.weight, self.variance_epsilon)
class Attention(nn.Module):
"""Multi-head attention module."""
def __init__(self, config: gLM2Config):
super().__init__()
self.n_heads = config.heads
self.head_dim = config.dim // config.heads
self.wqkv = nn.Linear(config.dim, self.n_heads *
self.head_dim * 3, bias=False)
self.wo = nn.Linear(config.heads * self.head_dim,
config.dim, bias=False)
self.rotary_emb = RotaryEmbedding(self.head_dim)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
bsz, seqlen, h_size = x.shape
qkv = self.wqkv(x)
qkv = qkv.view(bsz, seqlen, 3, self.n_heads, self.head_dim)
qkv = self.rotary_emb(qkv)
# (batch, nheads, 3, seqlen, headdim)
qkv = torch.transpose(qkv, 3, 1)
q = qkv[:, :, 0]
k = qkv[:, :, 1]
v = qkv[:, :, 2]
if attention_mask is not None:
attention_mask = attention_mask[:, None, None, :]
attention_mask = attention_mask.expand(
bsz, self.n_heads, seqlen, seqlen
).bool()
# [B, heads, seq, D]
output = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attention_mask
)
output = output.permute(0, 2, 1, 3).contiguous()
output = output.view(bsz, seqlen, h_size)
return self.wo(output)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float],
):
"""
SwiGLU FeedForward module.
Args:
dim (int): Input dimension.
hidden_dim (int): Hidden dimension of the feedforward layer.
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
"""
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * \
((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
def forward(self, x):
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
class TransformerBlock(nn.Module):
def __init__(self, config: gLM2Config):
super().__init__()
self.n_heads = config.heads
self.dim = config.dim
self.head_dim = config.dim // config.heads
self.attention = Attention(config)
self.feed_forward = FeedForward(
dim=config.dim,
hidden_dim=4 * config.dim,
multiple_of=config.swiglu_multiple_of,
ffn_dim_multiplier=config.ffn_dim_multiplier,
)
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
r = self.attention(self.attention_norm(
x), attention_mask=attention_mask)
h = x + r
r = self.feed_forward(self.ffn_norm(h))
out = h + r
return out
class TransformerLayers(nn.Module):
def __init__(self, config: gLM2Config):
super().__init__()
self.config = config
self.layers = torch.nn.ModuleList(
[TransformerBlock(config=config) for _ in range(config.depth)]
)
def forward(
self,
x: torch.FloatTensor,
attention_mask: Optional[torch.BoolTensor] = None,
return_all_hiddens: bool = False,
):
if x.shape[-1] != self.config.dim:
raise ValueError(
f"Input feature dim should be {self.config.dim}, but input has shape {x.shape}"
)
hiddens = []
for layer in self.layers:
x = layer(x, attention_mask=attention_mask)
if return_all_hiddens:
hiddens.append(x)
if return_all_hiddens:
return x, hiddens
return x
class gLM2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = gLM2Config
base_model_prefix = "glm2"
supports_gradient_checkpointing = False
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if module.padding_idx is not None:
nn.init.zeros_(module.weight[module.padding_idx])
class gLM2Model(gLM2PreTrainedModel):
"""gLM2 Model."""
def __init__(self, config: gLM2Config):
super().__init__(config)
self.config = config
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.encoder = TransformerLayers(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
h = self.tok_embeddings(input_ids)
if output_hidden_states:
sequence_output, all_hidden_states = self.encoder(
h, attention_mask, return_all_hiddens=True)
else:
sequence_output = self.encoder(h, attention_mask)
all_hidden_states = None
if not return_dict:
return (sequence_output, all_hidden_states)
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=all_hidden_states,
)
class gLM2ForMaskedLM(gLM2PreTrainedModel):
def __init__(self, config: gLM2Config):
super().__init__(config)
self.glm2 = gLM2Model(config)
self.lm_head = gLM2LMHead(config)
self.init_weights()
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.glm2(
input_ids,
attention_mask=attention_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(prediction_scores.device)
masked_lm_loss = loss_fct(
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class gLM2LMHead(nn.Module):
"""gLM2 head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
self.proj_output = nn.Linear(
config.dim, config.vocab_size, bias=False)
def forward(self, features):
return self.proj_output(self.norm(features)) |