alejandralopezsosa commited on
Commit
ee3b783
1 Parent(s): ea5bbeb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -185
README.md CHANGED
@@ -6,199 +6,46 @@ metrics:
6
  - f1
7
  base_model:
8
  - tattabio/gLM2_150M
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- # Model Card for Model ID
12
 
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
-
16
-
17
- ## Model Details
18
-
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
24
-
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
-
33
- ### Model Sources [optional]
34
-
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
-
57
- ### Out-of-Scope Use
58
-
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
 
75
  ## How to Get Started with the Model
76
 
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
-
180
- **BibTeX:**
181
-
182
- [More Information Needed]
183
-
184
- **APA:**
185
-
186
- [More Information Needed]
187
-
188
- ## Glossary [optional]
189
-
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
-
192
- [More Information Needed]
193
-
194
- ## More Information [optional]
195
 
196
- [More Information Needed]
 
 
197
 
198
- ## Model Card Authors [optional]
 
199
 
200
- [More Information Needed]
 
 
 
201
 
202
- ## Model Card Contact
 
 
203
 
204
- [More Information Needed]
 
 
6
  - f1
7
  base_model:
8
  - tattabio/gLM2_150M
9
+ model-index:
10
+ - name: alejandralopezsosa/gLM2_150M-promoter_tata-lora
11
+ results:
12
+ - task:
13
+ type: sequence-classification
14
+ dataset:
15
+ type: InstaDeepAI/nucleotide_transformer_downstream_tasks_revised
16
+ name: nucleotide_transformer_downstream_tasks_revised
17
+ config: promoter_tata
18
+ split: test
19
+ revision: c8c94743d3d2838b943398ee676247ac2f774122
20
+ metrics:
21
+ - type: f1
22
+ value: 98.11
23
  ---
24
 
25
+ # gLM2 LoRA adapter for TATA promoter recognition
26
 
27
+ This model demonstrates the use of [gLM2_150M](https://huggingface.co/tattabio/gLM2_150M) embeddings for downstream classification.
28
+ The model is fine-tuned using LoRA and obtains an F1 score of 98.11% on the TATA promoter task from the [Nucleotide Transformer benchmarks](https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks_revised).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## How to Get Started with the Model
31
 
32
+ Use the code below to use the model for inference:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
+ ```python
35
+ from peft import PeftModel
36
+ from transformers import AutoConfig, AutoModelForSequenceClassification, AutoModel
37
 
38
+ glm2 = "tattabio/gLM2_150M"
39
+ adapter = "alejandralopezsosa/gLM2_150M-promoter_tata-lora"
40
 
41
+ load_kwargs = {
42
+ 'trust_remote_code': True,
43
+ 'torch_dtype': torch.bfloat16,
44
+ }
45
 
46
+ config = AutoConfig.from_pretrained(adapter, **load_kwargs)
47
+ base_model = AutoModelForSequenceClassification.from_config(config, **load_kwargs)
48
+ base_model.glm2 = AutoModel.from_pretrained("tattabio/gLM2_150M", **load_kwargs)
49
 
50
+ model = PeftModel.from_pretrained(base_model, adapter)
51
+ ```