t5-efficient-base-finetuned-1.2

This model is a fine-tuned version of google/t5-efficient-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5294
  • Rouge1: 62.691
  • Rouge2: 55.9731
  • Rougel: 60.9097
  • Rougelsum: 61.4393

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 4662
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.2424 1.0 1217 1.7042 34.2215 24.2754 31.7289 32.4237
1.7716 2.0 2434 1.6184 43.4774 34.0476 41.3691 41.9132
1.6324 3.0 3651 1.5811 49.1441 40.7935 47.0077 47.6388
1.5226 4.0 4868 1.5243 54.4769 46.3387 52.3289 52.9555
1.4121 5.0 6085 1.5040 56.8792 49.1963 54.7327 55.2805
1.331 6.0 7302 1.4930 58.6896 51.1683 56.7096 57.3605
1.2677 7.0 8519 1.4785 59.9285 52.4631 57.8575 58.4203
1.2175 8.0 9736 1.4839 60.0299 52.8806 58.0099 58.6348
1.1782 9.0 10953 1.4908 61.247 54.0887 59.2175 59.7658
1.1442 10.0 12170 1.4882 61.9895 54.9455 60.0728 60.5786
1.1118 11.0 13387 1.5061 62.1077 55.1276 60.2218 60.7475
1.081 12.0 14604 1.5078 61.6083 54.6805 59.7912 60.2489
1.0668 13.0 15821 1.5200 62.3075 55.5201 60.5192 60.9557
1.0488 14.0 17038 1.5344 62.5144 55.6332 60.6845 61.1715
1.0324 15.0 18255 1.5313 62.7697 56.0313 60.9298 61.4739
1.0302 16.0 19472 1.5294 62.691 55.9731 60.9097 61.4393

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.6
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.