aleksavega commited on
Commit
e9e8adc
·
1 Parent(s): a58555a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - summarization
5
+ - generated_from_trainer
6
+ metrics:
7
+ - rouge
8
+ model-index:
9
+ - name: t5-efficient-base-finetuned-1.2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # t5-efficient-base-finetuned-1.2
17
+
18
+ This model is a fine-tuned version of [google/t5-efficient-base](https://huggingface.co/google/t5-efficient-base) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.5294
21
+ - Rouge1: 62.691
22
+ - Rouge2: 55.9731
23
+ - Rougel: 60.9097
24
+ - Rougelsum: 61.4393
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 5.6e-05
44
+ - train_batch_size: 8
45
+ - eval_batch_size: 8
46
+ - seed: 4662
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 16
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
55
+ | 2.2424 | 1.0 | 1217 | 1.7042 | 34.2215 | 24.2754 | 31.7289 | 32.4237 |
56
+ | 1.7716 | 2.0 | 2434 | 1.6184 | 43.4774 | 34.0476 | 41.3691 | 41.9132 |
57
+ | 1.6324 | 3.0 | 3651 | 1.5811 | 49.1441 | 40.7935 | 47.0077 | 47.6388 |
58
+ | 1.5226 | 4.0 | 4868 | 1.5243 | 54.4769 | 46.3387 | 52.3289 | 52.9555 |
59
+ | 1.4121 | 5.0 | 6085 | 1.5040 | 56.8792 | 49.1963 | 54.7327 | 55.2805 |
60
+ | 1.331 | 6.0 | 7302 | 1.4930 | 58.6896 | 51.1683 | 56.7096 | 57.3605 |
61
+ | 1.2677 | 7.0 | 8519 | 1.4785 | 59.9285 | 52.4631 | 57.8575 | 58.4203 |
62
+ | 1.2175 | 8.0 | 9736 | 1.4839 | 60.0299 | 52.8806 | 58.0099 | 58.6348 |
63
+ | 1.1782 | 9.0 | 10953 | 1.4908 | 61.247 | 54.0887 | 59.2175 | 59.7658 |
64
+ | 1.1442 | 10.0 | 12170 | 1.4882 | 61.9895 | 54.9455 | 60.0728 | 60.5786 |
65
+ | 1.1118 | 11.0 | 13387 | 1.5061 | 62.1077 | 55.1276 | 60.2218 | 60.7475 |
66
+ | 1.081 | 12.0 | 14604 | 1.5078 | 61.6083 | 54.6805 | 59.7912 | 60.2489 |
67
+ | 1.0668 | 13.0 | 15821 | 1.5200 | 62.3075 | 55.5201 | 60.5192 | 60.9557 |
68
+ | 1.0488 | 14.0 | 17038 | 1.5344 | 62.5144 | 55.6332 | 60.6845 | 61.1715 |
69
+ | 1.0324 | 15.0 | 18255 | 1.5313 | 62.7697 | 56.0313 | 60.9298 | 61.4739 |
70
+ | 1.0302 | 16.0 | 19472 | 1.5294 | 62.691 | 55.9731 | 60.9097 | 61.4393 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.17.0
76
+ - Pytorch 1.10.2+cu102
77
+ - Datasets 1.18.3
78
+ - Tokenizers 0.11.6