iati-disability-multi-classifier-weighted

This model is a fine-tuned version of alex-miller/ODABert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7257
  • Accuracy: 0.9124
  • F1: 0.8335
  • Precision: 0.7943
  • Recall: 0.8767

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.9484 1.0 617 0.7796 0.8627 0.7541 0.6829 0.8418
0.6499 2.0 1234 0.6850 0.8976 0.8017 0.7770 0.8281
0.5907 3.0 1851 0.6667 0.9069 0.8182 0.7995 0.8378
0.5445 4.0 2468 0.6762 0.9086 0.8311 0.7719 0.9002
0.5034 5.0 3085 0.6412 0.9079 0.8238 0.7900 0.8605
0.4721 6.0 3702 0.6969 0.9092 0.8285 0.7846 0.8775
0.4565 7.0 4319 0.7236 0.9130 0.8339 0.7978 0.8735
0.4569 8.0 4936 0.6893 0.9114 0.8307 0.7953 0.8694
0.4233 9.0 5553 0.7279 0.9110 0.8294 0.7963 0.8654
0.432 10.0 6170 0.7257 0.9124 0.8335 0.7943 0.8767

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
168M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alex-miller/iati-disability-multi-classifier-weighted

Finetuned
(21)
this model