alex-miller's picture
Update README.md
b95df68 verified
metadata
library_name: transformers
license: apache-2.0
base_model: alex-miller/ODABert
tags:
  - generated_from_trainer
model-index:
  - name: wb-climate-regression
    results: []
datasets:
  - alex-miller/wb-climate-percentage

wb-climate-regression

This model is a fine-tuned version of alex-miller/ODABert on the alex-miller/wb-climate-percentage dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0309

Model description

A regression model that embeds text using a fine-tuned bert-base-multilingual-uncased and uses the AutoModelForSequenceClassification class to output predicted percentage climate finance, climate adaptation finance, and climate mitigation finance.

Intended uses & limitations

Intended to regress World Bank project development objectives and abstracts. Not yet validated against project descriptions written outside of the World Bank project API V3.

Training and evaluation data

Data was collected automatically from the World Bank project API V3. For full code on how data was gathered, see: https://github.com/akmiller01/world-bank-climate-regression/blob/main/code/wb_api_climate.py

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
0.0722 1.0 126 0.0577
0.0481 2.0 252 0.0391
0.04 3.0 378 0.0350
0.0366 4.0 504 0.0332
0.0341 5.0 630 0.0323
0.0323 6.0 756 0.0312
0.0304 7.0 882 0.0312
0.0296 8.0 1008 0.0310
0.0281 9.0 1134 0.0306
0.0268 10.0 1260 0.0310
0.0261 11.0 1386 0.0303
0.0247 12.0 1512 0.0305
0.0243 13.0 1638 0.0310
0.0233 14.0 1764 0.0306
0.0221 15.0 1890 0.0309
0.0222 16.0 2016 0.0307
0.0216 17.0 2142 0.0308
0.0211 18.0 2268 0.0312
0.021 19.0 2394 0.0310
0.0206 20.0 2520 0.0309

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1