|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: source-type-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# source-type-model |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6271 |
|
- F1: 0.6772 |
|
|
|
Classifies the following tags: |
|
|
|
``` |
|
'Cannot Determine' |
|
'Report/Document' |
|
'Named Individual' |
|
'Unnamed Individual' |
|
'Database' |
|
'Unnamed Group' |
|
'Named Group' |
|
'Vote/Poll' |
|
``` |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| No log | 0.12 | 100 | 0.7192 | 0.3792 | |
|
| No log | 0.25 | 200 | 0.7716 | 0.4005 | |
|
| No log | 0.37 | 300 | 0.7565 | 0.5297 | |
|
| No log | 0.49 | 400 | 0.5788 | 0.5806 | |
|
| 0.8223 | 0.62 | 500 | 0.5402 | 0.5933 | |
|
| 0.8223 | 0.74 | 600 | 0.5032 | 0.6666 | |
|
| 0.8223 | 0.86 | 700 | 0.4658 | 0.6754 | |
|
| 0.8223 | 0.99 | 800 | 0.5359 | 0.6441 | |
|
| 0.8223 | 1.11 | 900 | 0.5295 | 0.6442 | |
|
| 0.6009 | 1.23 | 1000 | 0.6077 | 0.6597 | |
|
| 0.6009 | 1.35 | 1100 | 0.6169 | 0.6360 | |
|
| 0.6009 | 1.48 | 1200 | 0.6014 | 0.6277 | |
|
| 0.6009 | 1.6 | 1300 | 0.6382 | 0.6327 | |
|
| 0.6009 | 1.72 | 1400 | 0.5226 | 0.6787 | |
|
| 0.5644 | 1.85 | 1500 | 0.4922 | 0.6485 | |
|
| 0.5644 | 1.97 | 1600 | 0.6181 | 0.6517 | |
|
| 0.5644 | 2.09 | 1700 | 0.6106 | 0.6781 | |
|
| 0.5644 | 2.22 | 1800 | 0.6652 | 0.6760 | |
|
| 0.5644 | 2.34 | 1900 | 0.6252 | 0.6739 | |
|
| 0.3299 | 2.46 | 2000 | 0.6620 | 0.6606 | |
|
| 0.3299 | 2.59 | 2100 | 0.6317 | 0.6772 | |
|
| 0.3299 | 2.71 | 2200 | 0.6170 | 0.6726 | |
|
| 0.3299 | 2.83 | 2300 | 0.6400 | 0.6773 | |
|
| 0.3299 | 2.96 | 2400 | 0.6271 | 0.6772 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|