lafontaine-gpt / bigram_model.py
Alexandre D-Julin
model v8
aa60148
import os
import torch
import onnx
import torch.nn as nn
from torch.nn import functional as F
from datetime import datetime
torch.manual_seed(1337) # for reproducibility
SEP = 50 * '-'
# hyperparameters ----------------------------------------------------------------------------------
batch_size = 64 # how many independent sequences will we process in parallel
block_size = 256 # what i sthe maximum context length for predictions
max_iters = 5000 # how many iterations to train for
eval_interval = 500 # how often to evaluate the model
learning_rate = 3e-4 # how fast we update the weights, lowering the learning rate as the model gets bigger
device = 'cuda' if torch.cuda.is_available() else 'cpu' # check if GPU is available
eval_iters = 200 # how many batches to average for evaluation
n_embd = 384 # number of embedding dimensions
n_head = 6 # number of self-attention heads
n_layer = 6 # number of transformer blocks
dropout = 0.2 # dropout rate
# dataset ------------------------------------------------------------------------------------------
dataset_path = 'dataset/tiny-lafontaine.txt'
with open(dataset_path, 'r', encoding='utf-8') as f:
text = f.read()
# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
stoi = {ch: i for i, ch in enumerate(chars)} # chars -> ints table
itos = {i: ch for i, ch in enumerate(chars)} # ints -> chars table
encode = lambda s: [stoi[c] for c in s] # encoder: takes a string, outputs a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: takes a list of integers, output a string
# train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data)) # first 90% of the data will be the training set, rest will be the validation set
train_data = data[:n]
val_data = data[n:]
# data loading -------------------------------------------------------------------------------------
def get_batch(split):
# Generate a small batch of data of inputs x and targets y
data = train_data if split == 'train' else val_data # choose the split
ix = torch.randint(len(data) - block_size, (batch_size,)) # sample random starting indices for the sequences
x = torch.stack([data[i: i + block_size] for i in ix]) # create a batch of context windows
y = torch.stack([data[i + 1:i + block_size + 1] for i in ix]) # create a batch of targets, one step forward
x, y = x.to(device), y.to(device) # move the data to the device
return x, y
@torch.no_grad() # this is just to reduce memory consumption, block won't call backward, no back-propagation
def estimate_loss():
out = {} # store the losses for the train and val splits
model.eval() # switch to evaluation mode
for split in ['train', 'val']: # iterate over both splits
losses = torch.zeros(eval_iters) # store the loss for each batch
for k in range(eval_iters): # iterate over the number of batches
X, Y = get_batch(split) # get a batch of data
_, loss = model(X, Y) # compute the loss
losses[k] = loss.item() # store the loss
out[split] = losses.mean() # store the average loss for the split
model.train() # switch back to training mode
return out # return the losses
# self-attention head ------------------------------------------------------------------------------
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False) # key projection
self.query = nn.Linear(n_embd, head_size, bias=False) # query projection
self.value = nn.Linear(n_embd, head_size, bias=False) # value projection
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) # causal mask
self.dropout = nn.Dropout(dropout) # dropout layer
def forward(self, x):
B, T, C = x.shape
k = self.key(x) # (B, T, C)
q = self.query(x) # (B, T, C)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2, -1) * C**-0.5 # (B, T, T) @ (B, C, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei) # apply dropout
# perform the weighted aggregation of the values
v = self.value(x)
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
return out
# multi-attention head -----------------------------------------------------------------------------
class MultiHeadAttention(nn.Module):
"""multiple heads of self-attention in parallel"""
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) # create n_heads heads
self.proj = nn.Linear(n_embd, n_embd) # linear projection to get back to the original dimension
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1) # concatenate the outputs of each head
out = self.proj(out) # linear projection to get back to the original dimension
return out
# feedforward block --------------------------------------------------------------------------------
class FeedForward(nn.Module):
"""a simple linear layer followed by a non-linearity"""
def __init__(self, n_embd):
super().__init__() # call the constructor of the parent class
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd), # linear layer
nn.ReLU(), # activation function
nn.Linear(4 * n_embd, n_embd), # projection layer to get back to the original dimension
nn.Dropout(dropout), # dropout layer
)
def forward(self, x):
return self.net(x) # apply the feedforward block
# transformer block --------------------------------------------------------------------------------
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head):
# n_embd: embedding dimension, n_head: number of heads we'd like
super().__init__()
head_size = n_embd // n_head # size of the self-attention heads
self.sa = MultiHeadAttention(n_head, head_size) # self-attention layer
self.ffwd = FeedForward(n_embd) # feedforward block
self.ln1 = nn.LayerNorm(n_embd) # layer normalization
self.ln2 = nn.LayerNorm(n_embd) # layer normalization
def forward(self, x):
x = x + self.sa(self.ln1(x)) # apply the self-attention block. Layer normalization is applied before
x = x + self.ffwd(self.ln2(x)) # apply the feedforward block. Layer normalization is applied before
return x
# simple bigram model ------------------------------------------------------------------------------
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
# each token directly reads off the logits from the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd) # token embeddings
self.position_embedding_table = nn.Embedding(block_size, n_embd) # positional embeddings
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) # stack of transformer blocks
self.ln_f = nn.LayerNorm(n_embd), # final layer normalization
self.lm_head = nn.Linear(n_embd, vocab_size) # output layer
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B, T) tensors of integers
tok_emb = self.token_embedding_table(idx) # (B, T, C) = Batch, Time (block_size), Channels (vocab_size)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T, C)
x = tok_emb + pos_emb # (B, T, C)
x = self.blocks(x) # apply the transformer blocks, multiple layers of self-attention and feedforward, (B, T, C)
logits = self.lm_head(x) # decoder head (B, T, vocab_size)
if targets is None: # if we don't have targets, we can't compute the loss
loss = None
else:
# reshape the logits to be (B*T, C) and the targets to be (B*T) so we can compute the loss
B, T, C = logits.shape # unpack batch, time, channels
logits = logits.view(B * T, C) # flatten the Time and Batch dimensions
targets = targets.view(B * T) # flatten the Time and Batch dimensions
# compute the loss using cross entropy = quality of the logicts in respect to the targets
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is a (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:] # (B, T)
# get the predictions
logits, loss = self(idx_cond) # (B, T, C) internally calls the forward method in pytorch
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
# train model --------------------------------------------------------------------------------------
def train_model():
# create the model and optimizer
model = BigramLanguageModel()
m = model.to(device) # move the model to the device (cuda)
# create a PyTorch optimizer
optimizer = torch.optim.AdamW(m.parameters(), lr=learning_rate) # AdamW is a good optimizer for transformers
# training loop ------------------------------------------------------------------------------------
for iter in range(max_iters):
# every once in a while evaluate the loss on the train and val sets
if iter % eval_interval == 0:
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# sample a batch of data
xb, yb = get_batch('train')
# evaluate the loss
_, loss = m(xb, yb) # calling the model and passing in the input and the targets
optimizer.zero_grad(set_to_none=True) # clear previous gradients
loss.backward() # compute new gradients
optimizer.step() # update the weights
# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device) # initialize context to be a single token
print(decode(m.generate(context, max_new_tokens=500)[0].tolist())) # generate 100 new tokens
# save model
save_model(model)
return m
# save model ---------------------------------------------------------------------------------------
def save_model(model, save_path=None):
try:
if save_path is None:
filename = os.path.splitext(os.path.basename(__file__))[0]
timestamp = datetime.now().strftime('%y%m%d_%H%M')
save_path = f'{filename}_{timestamp}.pth'
torch.save(model.state_dict(), save_path)
print(f"Model saved to {save_path}.")
return save_path
except Exception as e:
print(f"Error saving the model: {e}")
# load model ---------------------------------------------------------------------------------------
def load_model(model_path):
try:
# Load the model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = BigramLanguageModel().to(device)
model.load_state_dict(torch.load(model_path, map_location=device, weights_only=True))
print(f"Model loaded from {model_path}.")
return model
except Exception as e:
print(f"Error loading the model: {e}")
# run inference ------------------------------------------------------------------------------------
def run_inference(model, max_tokens=500):
# Set to evaluation mode
model.eval()
# Define a starting context and run inference
context = torch.zeros((1, 1), dtype=torch.long, device=device) # Initialize with a single token
generated_sequence = model.generate(context, max_tokens) # Generate text
generated_text = decode(generated_sequence[0].tolist()) # Decode the generated indices to text
return generated_text
# export model to onnx format ----------------------------------------------------------------------
def export_onnx_model(pt_model, onnx_path):
try:
# Dummy input tensor of the same shape as your training input
dummy_input = torch.zeros((1, 256), dtype=torch.long).to(device) # Example input shape
# Export the model to ONNX format
torch.onnx.export(
pt_model, # your trained model
dummy_input, # example input tensor
onnx_path, # output file path
input_names=["input"], # input layer names
output_names=["output"], # output layer names
dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}}, # dynamic axis support
opset_version=13 # compatibility with latest ONNX version
)
print(f"Model exported to {onnx_path}.")
except Exception as e:
print(f"Error exporting the onnx model: {e}")
if __name__ == '__main__':
# train model
model = train_model()