whisper-small-wolof / README.md
alfaDF9's picture
End of training
a6a3a8c verified
metadata
library_name: transformers
language:
  - wo
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - IndabaxSenegal/asr-wolof-dataset
metrics:
  - wer
model-index:
  - name: Whisper small Wolof
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ASR Wolof Dataset
          type: IndabaxSenegal/asr-wolof-dataset
          args: 'config: wo, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 51.15567641060503

Whisper small Wolof

This model is a fine-tuned version of openai/whisper-small on the ASR Wolof Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8271
  • Wer: 51.1557

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1739 0.1724 1000 0.8788 51.3684
0.1841 0.3448 2000 0.8774 52.4196
0.199 0.5172 3000 0.8464 54.0335
0.2244 0.6897 4000 0.8384 49.9673
0.1751 0.8621 5000 0.8271 51.1557

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0