|
---
|
|
tags:
|
|
- mteb
|
|
- sentence transformers
|
|
model-index:
|
|
- name: bge-small-en
|
|
results:
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_counterfactual
|
|
name: MTEB AmazonCounterfactualClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
|
metrics:
|
|
- type: accuracy
|
|
value: 74.34328358208955
|
|
- type: ap
|
|
value: 37.59947775195661
|
|
- type: f1
|
|
value: 68.548415491933
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_polarity
|
|
name: MTEB AmazonPolarityClassification
|
|
config: default
|
|
split: test
|
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
|
metrics:
|
|
- type: accuracy
|
|
value: 93.04527499999999
|
|
- type: ap
|
|
value: 89.60696356772135
|
|
- type: f1
|
|
value: 93.03361469382438
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_reviews_multi
|
|
name: MTEB AmazonReviewsClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
|
metrics:
|
|
- type: accuracy
|
|
value: 46.08
|
|
- type: f1
|
|
value: 45.66249835363254
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: arguana
|
|
name: MTEB ArguAna
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 35.205999999999996
|
|
- type: map_at_10
|
|
value: 50.782000000000004
|
|
- type: map_at_100
|
|
value: 51.547
|
|
- type: map_at_1000
|
|
value: 51.554
|
|
- type: map_at_3
|
|
value: 46.515
|
|
- type: map_at_5
|
|
value: 49.296
|
|
- type: mrr_at_1
|
|
value: 35.632999999999996
|
|
- type: mrr_at_10
|
|
value: 50.958999999999996
|
|
- type: mrr_at_100
|
|
value: 51.724000000000004
|
|
- type: mrr_at_1000
|
|
value: 51.731
|
|
- type: mrr_at_3
|
|
value: 46.669
|
|
- type: mrr_at_5
|
|
value: 49.439
|
|
- type: ndcg_at_1
|
|
value: 35.205999999999996
|
|
- type: ndcg_at_10
|
|
value: 58.835
|
|
- type: ndcg_at_100
|
|
value: 62.095
|
|
- type: ndcg_at_1000
|
|
value: 62.255
|
|
- type: ndcg_at_3
|
|
value: 50.255
|
|
- type: ndcg_at_5
|
|
value: 55.296
|
|
- type: precision_at_1
|
|
value: 35.205999999999996
|
|
- type: precision_at_10
|
|
value: 8.421
|
|
- type: precision_at_100
|
|
value: 0.984
|
|
- type: precision_at_1000
|
|
value: 0.1
|
|
- type: precision_at_3
|
|
value: 20.365
|
|
- type: precision_at_5
|
|
value: 14.680000000000001
|
|
- type: recall_at_1
|
|
value: 35.205999999999996
|
|
- type: recall_at_10
|
|
value: 84.211
|
|
- type: recall_at_100
|
|
value: 98.43499999999999
|
|
- type: recall_at_1000
|
|
value: 99.644
|
|
- type: recall_at_3
|
|
value: 61.095
|
|
- type: recall_at_5
|
|
value: 73.4
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/arxiv-clustering-p2p
|
|
name: MTEB ArxivClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
|
metrics:
|
|
- type: v_measure
|
|
value: 47.52644476278646
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/arxiv-clustering-s2s
|
|
name: MTEB ArxivClusteringS2S
|
|
config: default
|
|
split: test
|
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
|
metrics:
|
|
- type: v_measure
|
|
value: 39.973045724188964
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/askubuntudupquestions-reranking
|
|
name: MTEB AskUbuntuDupQuestions
|
|
config: default
|
|
split: test
|
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
|
metrics:
|
|
- type: map
|
|
value: 62.28285314871488
|
|
- type: mrr
|
|
value: 74.52743701358659
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/biosses-sts
|
|
name: MTEB BIOSSES
|
|
config: default
|
|
split: test
|
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 80.09041909160327
|
|
- type: cos_sim_spearman
|
|
value: 79.96266537706944
|
|
- type: euclidean_pearson
|
|
value: 79.50774978162241
|
|
- type: euclidean_spearman
|
|
value: 79.9144715078551
|
|
- type: manhattan_pearson
|
|
value: 79.2062139879302
|
|
- type: manhattan_spearman
|
|
value: 79.35000081468212
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/banking77
|
|
name: MTEB Banking77Classification
|
|
config: default
|
|
split: test
|
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
|
metrics:
|
|
- type: accuracy
|
|
value: 85.31493506493506
|
|
- type: f1
|
|
value: 85.2704557977762
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/biorxiv-clustering-p2p
|
|
name: MTEB BiorxivClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
|
metrics:
|
|
- type: v_measure
|
|
value: 39.6837242810816
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/biorxiv-clustering-s2s
|
|
name: MTEB BiorxivClusteringS2S
|
|
config: default
|
|
split: test
|
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
|
metrics:
|
|
- type: v_measure
|
|
value: 35.38881249555897
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackAndroidRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 27.884999999999998
|
|
- type: map_at_10
|
|
value: 39.574
|
|
- type: map_at_100
|
|
value: 40.993
|
|
- type: map_at_1000
|
|
value: 41.129
|
|
- type: map_at_3
|
|
value: 36.089
|
|
- type: map_at_5
|
|
value: 38.191
|
|
- type: mrr_at_1
|
|
value: 34.477999999999994
|
|
- type: mrr_at_10
|
|
value: 45.411
|
|
- type: mrr_at_100
|
|
value: 46.089999999999996
|
|
- type: mrr_at_1000
|
|
value: 46.147
|
|
- type: mrr_at_3
|
|
value: 42.346000000000004
|
|
- type: mrr_at_5
|
|
value: 44.292
|
|
- type: ndcg_at_1
|
|
value: 34.477999999999994
|
|
- type: ndcg_at_10
|
|
value: 46.123999999999995
|
|
- type: ndcg_at_100
|
|
value: 51.349999999999994
|
|
- type: ndcg_at_1000
|
|
value: 53.578
|
|
- type: ndcg_at_3
|
|
value: 40.824
|
|
- type: ndcg_at_5
|
|
value: 43.571
|
|
- type: precision_at_1
|
|
value: 34.477999999999994
|
|
- type: precision_at_10
|
|
value: 8.841000000000001
|
|
- type: precision_at_100
|
|
value: 1.4460000000000002
|
|
- type: precision_at_1000
|
|
value: 0.192
|
|
- type: precision_at_3
|
|
value: 19.742
|
|
- type: precision_at_5
|
|
value: 14.421000000000001
|
|
- type: recall_at_1
|
|
value: 27.884999999999998
|
|
- type: recall_at_10
|
|
value: 59.087
|
|
- type: recall_at_100
|
|
value: 80.609
|
|
- type: recall_at_1000
|
|
value: 95.054
|
|
- type: recall_at_3
|
|
value: 44.082
|
|
- type: recall_at_5
|
|
value: 51.593999999999994
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackEnglishRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 30.639
|
|
- type: map_at_10
|
|
value: 40.047
|
|
- type: map_at_100
|
|
value: 41.302
|
|
- type: map_at_1000
|
|
value: 41.425
|
|
- type: map_at_3
|
|
value: 37.406
|
|
- type: map_at_5
|
|
value: 38.934000000000005
|
|
- type: mrr_at_1
|
|
value: 37.707
|
|
- type: mrr_at_10
|
|
value: 46.082
|
|
- type: mrr_at_100
|
|
value: 46.745
|
|
- type: mrr_at_1000
|
|
value: 46.786
|
|
- type: mrr_at_3
|
|
value: 43.980999999999995
|
|
- type: mrr_at_5
|
|
value: 45.287
|
|
- type: ndcg_at_1
|
|
value: 37.707
|
|
- type: ndcg_at_10
|
|
value: 45.525
|
|
- type: ndcg_at_100
|
|
value: 49.976
|
|
- type: ndcg_at_1000
|
|
value: 51.94499999999999
|
|
- type: ndcg_at_3
|
|
value: 41.704
|
|
- type: ndcg_at_5
|
|
value: 43.596000000000004
|
|
- type: precision_at_1
|
|
value: 37.707
|
|
- type: precision_at_10
|
|
value: 8.465
|
|
- type: precision_at_100
|
|
value: 1.375
|
|
- type: precision_at_1000
|
|
value: 0.183
|
|
- type: precision_at_3
|
|
value: 19.979
|
|
- type: precision_at_5
|
|
value: 14.115
|
|
- type: recall_at_1
|
|
value: 30.639
|
|
- type: recall_at_10
|
|
value: 54.775
|
|
- type: recall_at_100
|
|
value: 73.678
|
|
- type: recall_at_1000
|
|
value: 86.142
|
|
- type: recall_at_3
|
|
value: 43.230000000000004
|
|
- type: recall_at_5
|
|
value: 48.622
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackGamingRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 38.038
|
|
- type: map_at_10
|
|
value: 49.922
|
|
- type: map_at_100
|
|
value: 51.032
|
|
- type: map_at_1000
|
|
value: 51.085
|
|
- type: map_at_3
|
|
value: 46.664
|
|
- type: map_at_5
|
|
value: 48.588
|
|
- type: mrr_at_1
|
|
value: 43.95
|
|
- type: mrr_at_10
|
|
value: 53.566
|
|
- type: mrr_at_100
|
|
value: 54.318999999999996
|
|
- type: mrr_at_1000
|
|
value: 54.348
|
|
- type: mrr_at_3
|
|
value: 51.066
|
|
- type: mrr_at_5
|
|
value: 52.649
|
|
- type: ndcg_at_1
|
|
value: 43.95
|
|
- type: ndcg_at_10
|
|
value: 55.676
|
|
- type: ndcg_at_100
|
|
value: 60.126000000000005
|
|
- type: ndcg_at_1000
|
|
value: 61.208
|
|
- type: ndcg_at_3
|
|
value: 50.20400000000001
|
|
- type: ndcg_at_5
|
|
value: 53.038
|
|
- type: precision_at_1
|
|
value: 43.95
|
|
- type: precision_at_10
|
|
value: 8.953
|
|
- type: precision_at_100
|
|
value: 1.2109999999999999
|
|
- type: precision_at_1000
|
|
value: 0.135
|
|
- type: precision_at_3
|
|
value: 22.256999999999998
|
|
- type: precision_at_5
|
|
value: 15.524
|
|
- type: recall_at_1
|
|
value: 38.038
|
|
- type: recall_at_10
|
|
value: 69.15
|
|
- type: recall_at_100
|
|
value: 88.31599999999999
|
|
- type: recall_at_1000
|
|
value: 95.993
|
|
- type: recall_at_3
|
|
value: 54.663
|
|
- type: recall_at_5
|
|
value: 61.373
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackGisRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 24.872
|
|
- type: map_at_10
|
|
value: 32.912
|
|
- type: map_at_100
|
|
value: 33.972
|
|
- type: map_at_1000
|
|
value: 34.046
|
|
- type: map_at_3
|
|
value: 30.361
|
|
- type: map_at_5
|
|
value: 31.704
|
|
- type: mrr_at_1
|
|
value: 26.779999999999998
|
|
- type: mrr_at_10
|
|
value: 34.812
|
|
- type: mrr_at_100
|
|
value: 35.754999999999995
|
|
- type: mrr_at_1000
|
|
value: 35.809000000000005
|
|
- type: mrr_at_3
|
|
value: 32.335
|
|
- type: mrr_at_5
|
|
value: 33.64
|
|
- type: ndcg_at_1
|
|
value: 26.779999999999998
|
|
- type: ndcg_at_10
|
|
value: 37.623
|
|
- type: ndcg_at_100
|
|
value: 42.924
|
|
- type: ndcg_at_1000
|
|
value: 44.856
|
|
- type: ndcg_at_3
|
|
value: 32.574
|
|
- type: ndcg_at_5
|
|
value: 34.842
|
|
- type: precision_at_1
|
|
value: 26.779999999999998
|
|
- type: precision_at_10
|
|
value: 5.729
|
|
- type: precision_at_100
|
|
value: 0.886
|
|
- type: precision_at_1000
|
|
value: 0.109
|
|
- type: precision_at_3
|
|
value: 13.559
|
|
- type: precision_at_5
|
|
value: 9.469
|
|
- type: recall_at_1
|
|
value: 24.872
|
|
- type: recall_at_10
|
|
value: 50.400999999999996
|
|
- type: recall_at_100
|
|
value: 74.954
|
|
- type: recall_at_1000
|
|
value: 89.56
|
|
- type: recall_at_3
|
|
value: 36.726
|
|
- type: recall_at_5
|
|
value: 42.138999999999996
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackMathematicaRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 16.803
|
|
- type: map_at_10
|
|
value: 24.348
|
|
- type: map_at_100
|
|
value: 25.56
|
|
- type: map_at_1000
|
|
value: 25.668000000000003
|
|
- type: map_at_3
|
|
value: 21.811
|
|
- type: map_at_5
|
|
value: 23.287
|
|
- type: mrr_at_1
|
|
value: 20.771
|
|
- type: mrr_at_10
|
|
value: 28.961
|
|
- type: mrr_at_100
|
|
value: 29.979
|
|
- type: mrr_at_1000
|
|
value: 30.046
|
|
- type: mrr_at_3
|
|
value: 26.555
|
|
- type: mrr_at_5
|
|
value: 28.060000000000002
|
|
- type: ndcg_at_1
|
|
value: 20.771
|
|
- type: ndcg_at_10
|
|
value: 29.335
|
|
- type: ndcg_at_100
|
|
value: 35.188
|
|
- type: ndcg_at_1000
|
|
value: 37.812
|
|
- type: ndcg_at_3
|
|
value: 24.83
|
|
- type: ndcg_at_5
|
|
value: 27.119
|
|
- type: precision_at_1
|
|
value: 20.771
|
|
- type: precision_at_10
|
|
value: 5.4350000000000005
|
|
- type: precision_at_100
|
|
value: 0.9480000000000001
|
|
- type: precision_at_1000
|
|
value: 0.13
|
|
- type: precision_at_3
|
|
value: 11.982
|
|
- type: precision_at_5
|
|
value: 8.831
|
|
- type: recall_at_1
|
|
value: 16.803
|
|
- type: recall_at_10
|
|
value: 40.039
|
|
- type: recall_at_100
|
|
value: 65.83200000000001
|
|
- type: recall_at_1000
|
|
value: 84.478
|
|
- type: recall_at_3
|
|
value: 27.682000000000002
|
|
- type: recall_at_5
|
|
value: 33.535
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackPhysicsRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 28.345
|
|
- type: map_at_10
|
|
value: 37.757000000000005
|
|
- type: map_at_100
|
|
value: 39.141
|
|
- type: map_at_1000
|
|
value: 39.262
|
|
- type: map_at_3
|
|
value: 35.183
|
|
- type: map_at_5
|
|
value: 36.592
|
|
- type: mrr_at_1
|
|
value: 34.649
|
|
- type: mrr_at_10
|
|
value: 43.586999999999996
|
|
- type: mrr_at_100
|
|
value: 44.481
|
|
- type: mrr_at_1000
|
|
value: 44.542
|
|
- type: mrr_at_3
|
|
value: 41.29
|
|
- type: mrr_at_5
|
|
value: 42.642
|
|
- type: ndcg_at_1
|
|
value: 34.649
|
|
- type: ndcg_at_10
|
|
value: 43.161
|
|
- type: ndcg_at_100
|
|
value: 48.734
|
|
- type: ndcg_at_1000
|
|
value: 51.046
|
|
- type: ndcg_at_3
|
|
value: 39.118
|
|
- type: ndcg_at_5
|
|
value: 41.022
|
|
- type: precision_at_1
|
|
value: 34.649
|
|
- type: precision_at_10
|
|
value: 7.603
|
|
- type: precision_at_100
|
|
value: 1.209
|
|
- type: precision_at_1000
|
|
value: 0.157
|
|
- type: precision_at_3
|
|
value: 18.319
|
|
- type: precision_at_5
|
|
value: 12.839
|
|
- type: recall_at_1
|
|
value: 28.345
|
|
- type: recall_at_10
|
|
value: 53.367
|
|
- type: recall_at_100
|
|
value: 76.453
|
|
- type: recall_at_1000
|
|
value: 91.82000000000001
|
|
- type: recall_at_3
|
|
value: 41.636
|
|
- type: recall_at_5
|
|
value: 46.760000000000005
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackProgrammersRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 22.419
|
|
- type: map_at_10
|
|
value: 31.716
|
|
- type: map_at_100
|
|
value: 33.152
|
|
- type: map_at_1000
|
|
value: 33.267
|
|
- type: map_at_3
|
|
value: 28.74
|
|
- type: map_at_5
|
|
value: 30.48
|
|
- type: mrr_at_1
|
|
value: 28.310999999999996
|
|
- type: mrr_at_10
|
|
value: 37.039
|
|
- type: mrr_at_100
|
|
value: 38.09
|
|
- type: mrr_at_1000
|
|
value: 38.145
|
|
- type: mrr_at_3
|
|
value: 34.437
|
|
- type: mrr_at_5
|
|
value: 36.024
|
|
- type: ndcg_at_1
|
|
value: 28.310999999999996
|
|
- type: ndcg_at_10
|
|
value: 37.41
|
|
- type: ndcg_at_100
|
|
value: 43.647999999999996
|
|
- type: ndcg_at_1000
|
|
value: 46.007
|
|
- type: ndcg_at_3
|
|
value: 32.509
|
|
- type: ndcg_at_5
|
|
value: 34.943999999999996
|
|
- type: precision_at_1
|
|
value: 28.310999999999996
|
|
- type: precision_at_10
|
|
value: 6.963
|
|
- type: precision_at_100
|
|
value: 1.1860000000000002
|
|
- type: precision_at_1000
|
|
value: 0.154
|
|
- type: precision_at_3
|
|
value: 15.867999999999999
|
|
- type: precision_at_5
|
|
value: 11.507000000000001
|
|
- type: recall_at_1
|
|
value: 22.419
|
|
- type: recall_at_10
|
|
value: 49.28
|
|
- type: recall_at_100
|
|
value: 75.802
|
|
- type: recall_at_1000
|
|
value: 92.032
|
|
- type: recall_at_3
|
|
value: 35.399
|
|
- type: recall_at_5
|
|
value: 42.027
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 24.669249999999998
|
|
- type: map_at_10
|
|
value: 33.332583333333325
|
|
- type: map_at_100
|
|
value: 34.557833333333335
|
|
- type: map_at_1000
|
|
value: 34.67141666666666
|
|
- type: map_at_3
|
|
value: 30.663166666666662
|
|
- type: map_at_5
|
|
value: 32.14883333333333
|
|
- type: mrr_at_1
|
|
value: 29.193833333333334
|
|
- type: mrr_at_10
|
|
value: 37.47625
|
|
- type: mrr_at_100
|
|
value: 38.3545
|
|
- type: mrr_at_1000
|
|
value: 38.413166666666676
|
|
- type: mrr_at_3
|
|
value: 35.06741666666667
|
|
- type: mrr_at_5
|
|
value: 36.450666666666656
|
|
- type: ndcg_at_1
|
|
value: 29.193833333333334
|
|
- type: ndcg_at_10
|
|
value: 38.505416666666676
|
|
- type: ndcg_at_100
|
|
value: 43.81125
|
|
- type: ndcg_at_1000
|
|
value: 46.09558333333333
|
|
- type: ndcg_at_3
|
|
value: 33.90916666666667
|
|
- type: ndcg_at_5
|
|
value: 36.07666666666666
|
|
- type: precision_at_1
|
|
value: 29.193833333333334
|
|
- type: precision_at_10
|
|
value: 6.7251666666666665
|
|
- type: precision_at_100
|
|
value: 1.1058333333333332
|
|
- type: precision_at_1000
|
|
value: 0.14833333333333332
|
|
- type: precision_at_3
|
|
value: 15.554166666666665
|
|
- type: precision_at_5
|
|
value: 11.079250000000002
|
|
- type: recall_at_1
|
|
value: 24.669249999999998
|
|
- type: recall_at_10
|
|
value: 49.75583333333332
|
|
- type: recall_at_100
|
|
value: 73.06908333333332
|
|
- type: recall_at_1000
|
|
value: 88.91316666666667
|
|
- type: recall_at_3
|
|
value: 36.913250000000005
|
|
- type: recall_at_5
|
|
value: 42.48641666666666
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackStatsRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 24.044999999999998
|
|
- type: map_at_10
|
|
value: 30.349999999999998
|
|
- type: map_at_100
|
|
value: 31.273
|
|
- type: map_at_1000
|
|
value: 31.362000000000002
|
|
- type: map_at_3
|
|
value: 28.508
|
|
- type: map_at_5
|
|
value: 29.369
|
|
- type: mrr_at_1
|
|
value: 26.994
|
|
- type: mrr_at_10
|
|
value: 33.12
|
|
- type: mrr_at_100
|
|
value: 33.904
|
|
- type: mrr_at_1000
|
|
value: 33.967000000000006
|
|
- type: mrr_at_3
|
|
value: 31.365
|
|
- type: mrr_at_5
|
|
value: 32.124
|
|
- type: ndcg_at_1
|
|
value: 26.994
|
|
- type: ndcg_at_10
|
|
value: 34.214
|
|
- type: ndcg_at_100
|
|
value: 38.681
|
|
- type: ndcg_at_1000
|
|
value: 40.926
|
|
- type: ndcg_at_3
|
|
value: 30.725
|
|
- type: ndcg_at_5
|
|
value: 31.967000000000002
|
|
- type: precision_at_1
|
|
value: 26.994
|
|
- type: precision_at_10
|
|
value: 5.215
|
|
- type: precision_at_100
|
|
value: 0.807
|
|
- type: precision_at_1000
|
|
value: 0.108
|
|
- type: precision_at_3
|
|
value: 12.986
|
|
- type: precision_at_5
|
|
value: 8.712
|
|
- type: recall_at_1
|
|
value: 24.044999999999998
|
|
- type: recall_at_10
|
|
value: 43.456
|
|
- type: recall_at_100
|
|
value: 63.675000000000004
|
|
- type: recall_at_1000
|
|
value: 80.05499999999999
|
|
- type: recall_at_3
|
|
value: 33.561
|
|
- type: recall_at_5
|
|
value: 36.767
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackTexRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 15.672
|
|
- type: map_at_10
|
|
value: 22.641
|
|
- type: map_at_100
|
|
value: 23.75
|
|
- type: map_at_1000
|
|
value: 23.877000000000002
|
|
- type: map_at_3
|
|
value: 20.219
|
|
- type: map_at_5
|
|
value: 21.648
|
|
- type: mrr_at_1
|
|
value: 18.823
|
|
- type: mrr_at_10
|
|
value: 26.101999999999997
|
|
- type: mrr_at_100
|
|
value: 27.038
|
|
- type: mrr_at_1000
|
|
value: 27.118
|
|
- type: mrr_at_3
|
|
value: 23.669
|
|
- type: mrr_at_5
|
|
value: 25.173000000000002
|
|
- type: ndcg_at_1
|
|
value: 18.823
|
|
- type: ndcg_at_10
|
|
value: 27.176000000000002
|
|
- type: ndcg_at_100
|
|
value: 32.42
|
|
- type: ndcg_at_1000
|
|
value: 35.413
|
|
- type: ndcg_at_3
|
|
value: 22.756999999999998
|
|
- type: ndcg_at_5
|
|
value: 25.032
|
|
- type: precision_at_1
|
|
value: 18.823
|
|
- type: precision_at_10
|
|
value: 5.034000000000001
|
|
- type: precision_at_100
|
|
value: 0.895
|
|
- type: precision_at_1000
|
|
value: 0.132
|
|
- type: precision_at_3
|
|
value: 10.771
|
|
- type: precision_at_5
|
|
value: 8.1
|
|
- type: recall_at_1
|
|
value: 15.672
|
|
- type: recall_at_10
|
|
value: 37.296
|
|
- type: recall_at_100
|
|
value: 60.863
|
|
- type: recall_at_1000
|
|
value: 82.234
|
|
- type: recall_at_3
|
|
value: 25.330000000000002
|
|
- type: recall_at_5
|
|
value: 30.964000000000002
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackUnixRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 24.633
|
|
- type: map_at_10
|
|
value: 32.858
|
|
- type: map_at_100
|
|
value: 34.038000000000004
|
|
- type: map_at_1000
|
|
value: 34.141
|
|
- type: map_at_3
|
|
value: 30.209000000000003
|
|
- type: map_at_5
|
|
value: 31.567
|
|
- type: mrr_at_1
|
|
value: 28.358
|
|
- type: mrr_at_10
|
|
value: 36.433
|
|
- type: mrr_at_100
|
|
value: 37.352000000000004
|
|
- type: mrr_at_1000
|
|
value: 37.41
|
|
- type: mrr_at_3
|
|
value: 34.033
|
|
- type: mrr_at_5
|
|
value: 35.246
|
|
- type: ndcg_at_1
|
|
value: 28.358
|
|
- type: ndcg_at_10
|
|
value: 37.973
|
|
- type: ndcg_at_100
|
|
value: 43.411
|
|
- type: ndcg_at_1000
|
|
value: 45.747
|
|
- type: ndcg_at_3
|
|
value: 32.934999999999995
|
|
- type: ndcg_at_5
|
|
value: 35.013
|
|
- type: precision_at_1
|
|
value: 28.358
|
|
- type: precision_at_10
|
|
value: 6.418
|
|
- type: precision_at_100
|
|
value: 1.02
|
|
- type: precision_at_1000
|
|
value: 0.133
|
|
- type: precision_at_3
|
|
value: 14.677000000000001
|
|
- type: precision_at_5
|
|
value: 10.335999999999999
|
|
- type: recall_at_1
|
|
value: 24.633
|
|
- type: recall_at_10
|
|
value: 50.048
|
|
- type: recall_at_100
|
|
value: 73.821
|
|
- type: recall_at_1000
|
|
value: 90.046
|
|
- type: recall_at_3
|
|
value: 36.284
|
|
- type: recall_at_5
|
|
value: 41.370000000000005
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackWebmastersRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 23.133
|
|
- type: map_at_10
|
|
value: 31.491999999999997
|
|
- type: map_at_100
|
|
value: 33.062000000000005
|
|
- type: map_at_1000
|
|
value: 33.256
|
|
- type: map_at_3
|
|
value: 28.886
|
|
- type: map_at_5
|
|
value: 30.262
|
|
- type: mrr_at_1
|
|
value: 28.063
|
|
- type: mrr_at_10
|
|
value: 36.144
|
|
- type: mrr_at_100
|
|
value: 37.14
|
|
- type: mrr_at_1000
|
|
value: 37.191
|
|
- type: mrr_at_3
|
|
value: 33.762
|
|
- type: mrr_at_5
|
|
value: 34.997
|
|
- type: ndcg_at_1
|
|
value: 28.063
|
|
- type: ndcg_at_10
|
|
value: 36.951
|
|
- type: ndcg_at_100
|
|
value: 43.287
|
|
- type: ndcg_at_1000
|
|
value: 45.777
|
|
- type: ndcg_at_3
|
|
value: 32.786
|
|
- type: ndcg_at_5
|
|
value: 34.65
|
|
- type: precision_at_1
|
|
value: 28.063
|
|
- type: precision_at_10
|
|
value: 7.055
|
|
- type: precision_at_100
|
|
value: 1.476
|
|
- type: precision_at_1000
|
|
value: 0.22899999999999998
|
|
- type: precision_at_3
|
|
value: 15.481
|
|
- type: precision_at_5
|
|
value: 11.186
|
|
- type: recall_at_1
|
|
value: 23.133
|
|
- type: recall_at_10
|
|
value: 47.285
|
|
- type: recall_at_100
|
|
value: 76.176
|
|
- type: recall_at_1000
|
|
value: 92.176
|
|
- type: recall_at_3
|
|
value: 35.223
|
|
- type: recall_at_5
|
|
value: 40.142
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackWordpressRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 19.547
|
|
- type: map_at_10
|
|
value: 26.374
|
|
- type: map_at_100
|
|
value: 27.419
|
|
- type: map_at_1000
|
|
value: 27.539
|
|
- type: map_at_3
|
|
value: 23.882
|
|
- type: map_at_5
|
|
value: 25.163999999999998
|
|
- type: mrr_at_1
|
|
value: 21.442
|
|
- type: mrr_at_10
|
|
value: 28.458
|
|
- type: mrr_at_100
|
|
value: 29.360999999999997
|
|
- type: mrr_at_1000
|
|
value: 29.448999999999998
|
|
- type: mrr_at_3
|
|
value: 25.97
|
|
- type: mrr_at_5
|
|
value: 27.273999999999997
|
|
- type: ndcg_at_1
|
|
value: 21.442
|
|
- type: ndcg_at_10
|
|
value: 30.897000000000002
|
|
- type: ndcg_at_100
|
|
value: 35.99
|
|
- type: ndcg_at_1000
|
|
value: 38.832
|
|
- type: ndcg_at_3
|
|
value: 25.944
|
|
- type: ndcg_at_5
|
|
value: 28.126
|
|
- type: precision_at_1
|
|
value: 21.442
|
|
- type: precision_at_10
|
|
value: 4.9910000000000005
|
|
- type: precision_at_100
|
|
value: 0.8109999999999999
|
|
- type: precision_at_1000
|
|
value: 0.11800000000000001
|
|
- type: precision_at_3
|
|
value: 11.029
|
|
- type: precision_at_5
|
|
value: 7.911
|
|
- type: recall_at_1
|
|
value: 19.547
|
|
- type: recall_at_10
|
|
value: 42.886
|
|
- type: recall_at_100
|
|
value: 66.64999999999999
|
|
- type: recall_at_1000
|
|
value: 87.368
|
|
- type: recall_at_3
|
|
value: 29.143
|
|
- type: recall_at_5
|
|
value: 34.544000000000004
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: climate-fever
|
|
name: MTEB ClimateFEVER
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 15.572
|
|
- type: map_at_10
|
|
value: 25.312
|
|
- type: map_at_100
|
|
value: 27.062
|
|
- type: map_at_1000
|
|
value: 27.253
|
|
- type: map_at_3
|
|
value: 21.601
|
|
- type: map_at_5
|
|
value: 23.473
|
|
- type: mrr_at_1
|
|
value: 34.984
|
|
- type: mrr_at_10
|
|
value: 46.406
|
|
- type: mrr_at_100
|
|
value: 47.179
|
|
- type: mrr_at_1000
|
|
value: 47.21
|
|
- type: mrr_at_3
|
|
value: 43.485
|
|
- type: mrr_at_5
|
|
value: 45.322
|
|
- type: ndcg_at_1
|
|
value: 34.984
|
|
- type: ndcg_at_10
|
|
value: 34.344
|
|
- type: ndcg_at_100
|
|
value: 41.015
|
|
- type: ndcg_at_1000
|
|
value: 44.366
|
|
- type: ndcg_at_3
|
|
value: 29.119
|
|
- type: ndcg_at_5
|
|
value: 30.825999999999997
|
|
- type: precision_at_1
|
|
value: 34.984
|
|
- type: precision_at_10
|
|
value: 10.358
|
|
- type: precision_at_100
|
|
value: 1.762
|
|
- type: precision_at_1000
|
|
value: 0.23900000000000002
|
|
- type: precision_at_3
|
|
value: 21.368000000000002
|
|
- type: precision_at_5
|
|
value: 15.948
|
|
- type: recall_at_1
|
|
value: 15.572
|
|
- type: recall_at_10
|
|
value: 39.367999999999995
|
|
- type: recall_at_100
|
|
value: 62.183
|
|
- type: recall_at_1000
|
|
value: 80.92200000000001
|
|
- type: recall_at_3
|
|
value: 26.131999999999998
|
|
- type: recall_at_5
|
|
value: 31.635999999999996
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: dbpedia-entity
|
|
name: MTEB DBPedia
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 8.848
|
|
- type: map_at_10
|
|
value: 19.25
|
|
- type: map_at_100
|
|
value: 27.193
|
|
- type: map_at_1000
|
|
value: 28.721999999999998
|
|
- type: map_at_3
|
|
value: 13.968
|
|
- type: map_at_5
|
|
value: 16.283
|
|
- type: mrr_at_1
|
|
value: 68.75
|
|
- type: mrr_at_10
|
|
value: 76.25
|
|
- type: mrr_at_100
|
|
value: 76.534
|
|
- type: mrr_at_1000
|
|
value: 76.53999999999999
|
|
- type: mrr_at_3
|
|
value: 74.667
|
|
- type: mrr_at_5
|
|
value: 75.86699999999999
|
|
- type: ndcg_at_1
|
|
value: 56.00000000000001
|
|
- type: ndcg_at_10
|
|
value: 41.426
|
|
- type: ndcg_at_100
|
|
value: 45.660000000000004
|
|
- type: ndcg_at_1000
|
|
value: 53.02
|
|
- type: ndcg_at_3
|
|
value: 46.581
|
|
- type: ndcg_at_5
|
|
value: 43.836999999999996
|
|
- type: precision_at_1
|
|
value: 68.75
|
|
- type: precision_at_10
|
|
value: 32.800000000000004
|
|
- type: precision_at_100
|
|
value: 10.440000000000001
|
|
- type: precision_at_1000
|
|
value: 1.9980000000000002
|
|
- type: precision_at_3
|
|
value: 49.667
|
|
- type: precision_at_5
|
|
value: 42.25
|
|
- type: recall_at_1
|
|
value: 8.848
|
|
- type: recall_at_10
|
|
value: 24.467
|
|
- type: recall_at_100
|
|
value: 51.344
|
|
- type: recall_at_1000
|
|
value: 75.235
|
|
- type: recall_at_3
|
|
value: 15.329
|
|
- type: recall_at_5
|
|
value: 18.892999999999997
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/emotion
|
|
name: MTEB EmotionClassification
|
|
config: default
|
|
split: test
|
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
|
metrics:
|
|
- type: accuracy
|
|
value: 48.95
|
|
- type: f1
|
|
value: 43.44563593360779
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: fever
|
|
name: MTEB FEVER
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 78.036
|
|
- type: map_at_10
|
|
value: 85.639
|
|
- type: map_at_100
|
|
value: 85.815
|
|
- type: map_at_1000
|
|
value: 85.829
|
|
- type: map_at_3
|
|
value: 84.795
|
|
- type: map_at_5
|
|
value: 85.336
|
|
- type: mrr_at_1
|
|
value: 84.353
|
|
- type: mrr_at_10
|
|
value: 90.582
|
|
- type: mrr_at_100
|
|
value: 90.617
|
|
- type: mrr_at_1000
|
|
value: 90.617
|
|
- type: mrr_at_3
|
|
value: 90.132
|
|
- type: mrr_at_5
|
|
value: 90.447
|
|
- type: ndcg_at_1
|
|
value: 84.353
|
|
- type: ndcg_at_10
|
|
value: 89.003
|
|
- type: ndcg_at_100
|
|
value: 89.60000000000001
|
|
- type: ndcg_at_1000
|
|
value: 89.836
|
|
- type: ndcg_at_3
|
|
value: 87.81400000000001
|
|
- type: ndcg_at_5
|
|
value: 88.478
|
|
- type: precision_at_1
|
|
value: 84.353
|
|
- type: precision_at_10
|
|
value: 10.482
|
|
- type: precision_at_100
|
|
value: 1.099
|
|
- type: precision_at_1000
|
|
value: 0.11399999999999999
|
|
- type: precision_at_3
|
|
value: 33.257999999999996
|
|
- type: precision_at_5
|
|
value: 20.465
|
|
- type: recall_at_1
|
|
value: 78.036
|
|
- type: recall_at_10
|
|
value: 94.517
|
|
- type: recall_at_100
|
|
value: 96.828
|
|
- type: recall_at_1000
|
|
value: 98.261
|
|
- type: recall_at_3
|
|
value: 91.12
|
|
- type: recall_at_5
|
|
value: 92.946
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: fiqa
|
|
name: MTEB FiQA2018
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 20.191
|
|
- type: map_at_10
|
|
value: 32.369
|
|
- type: map_at_100
|
|
value: 34.123999999999995
|
|
- type: map_at_1000
|
|
value: 34.317
|
|
- type: map_at_3
|
|
value: 28.71
|
|
- type: map_at_5
|
|
value: 30.607
|
|
- type: mrr_at_1
|
|
value: 40.894999999999996
|
|
- type: mrr_at_10
|
|
value: 48.842
|
|
- type: mrr_at_100
|
|
value: 49.599
|
|
- type: mrr_at_1000
|
|
value: 49.647000000000006
|
|
- type: mrr_at_3
|
|
value: 46.785
|
|
- type: mrr_at_5
|
|
value: 47.672
|
|
- type: ndcg_at_1
|
|
value: 40.894999999999996
|
|
- type: ndcg_at_10
|
|
value: 39.872
|
|
- type: ndcg_at_100
|
|
value: 46.126
|
|
- type: ndcg_at_1000
|
|
value: 49.476
|
|
- type: ndcg_at_3
|
|
value: 37.153000000000006
|
|
- type: ndcg_at_5
|
|
value: 37.433
|
|
- type: precision_at_1
|
|
value: 40.894999999999996
|
|
- type: precision_at_10
|
|
value: 10.818
|
|
- type: precision_at_100
|
|
value: 1.73
|
|
- type: precision_at_1000
|
|
value: 0.231
|
|
- type: precision_at_3
|
|
value: 25.051000000000002
|
|
- type: precision_at_5
|
|
value: 17.531
|
|
- type: recall_at_1
|
|
value: 20.191
|
|
- type: recall_at_10
|
|
value: 45.768
|
|
- type: recall_at_100
|
|
value: 68.82000000000001
|
|
- type: recall_at_1000
|
|
value: 89.133
|
|
- type: recall_at_3
|
|
value: 33.296
|
|
- type: recall_at_5
|
|
value: 38.022
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: hotpotqa
|
|
name: MTEB HotpotQA
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 39.257
|
|
- type: map_at_10
|
|
value: 61.467000000000006
|
|
- type: map_at_100
|
|
value: 62.364
|
|
- type: map_at_1000
|
|
value: 62.424
|
|
- type: map_at_3
|
|
value: 58.228
|
|
- type: map_at_5
|
|
value: 60.283
|
|
- type: mrr_at_1
|
|
value: 78.515
|
|
- type: mrr_at_10
|
|
value: 84.191
|
|
- type: mrr_at_100
|
|
value: 84.378
|
|
- type: mrr_at_1000
|
|
value: 84.385
|
|
- type: mrr_at_3
|
|
value: 83.284
|
|
- type: mrr_at_5
|
|
value: 83.856
|
|
- type: ndcg_at_1
|
|
value: 78.515
|
|
- type: ndcg_at_10
|
|
value: 69.78999999999999
|
|
- type: ndcg_at_100
|
|
value: 72.886
|
|
- type: ndcg_at_1000
|
|
value: 74.015
|
|
- type: ndcg_at_3
|
|
value: 65.23
|
|
- type: ndcg_at_5
|
|
value: 67.80199999999999
|
|
- type: precision_at_1
|
|
value: 78.515
|
|
- type: precision_at_10
|
|
value: 14.519000000000002
|
|
- type: precision_at_100
|
|
value: 1.694
|
|
- type: precision_at_1000
|
|
value: 0.184
|
|
- type: precision_at_3
|
|
value: 41.702
|
|
- type: precision_at_5
|
|
value: 27.046999999999997
|
|
- type: recall_at_1
|
|
value: 39.257
|
|
- type: recall_at_10
|
|
value: 72.59299999999999
|
|
- type: recall_at_100
|
|
value: 84.679
|
|
- type: recall_at_1000
|
|
value: 92.12
|
|
- type: recall_at_3
|
|
value: 62.552
|
|
- type: recall_at_5
|
|
value: 67.616
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/imdb
|
|
name: MTEB ImdbClassification
|
|
config: default
|
|
split: test
|
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
|
metrics:
|
|
- type: accuracy
|
|
value: 91.5152
|
|
- type: ap
|
|
value: 87.64584669595709
|
|
- type: f1
|
|
value: 91.50605576428437
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: msmarco
|
|
name: MTEB MSMARCO
|
|
config: default
|
|
split: dev
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 21.926000000000002
|
|
- type: map_at_10
|
|
value: 34.049
|
|
- type: map_at_100
|
|
value: 35.213
|
|
- type: map_at_1000
|
|
value: 35.265
|
|
- type: map_at_3
|
|
value: 30.309
|
|
- type: map_at_5
|
|
value: 32.407000000000004
|
|
- type: mrr_at_1
|
|
value: 22.55
|
|
- type: mrr_at_10
|
|
value: 34.657
|
|
- type: mrr_at_100
|
|
value: 35.760999999999996
|
|
- type: mrr_at_1000
|
|
value: 35.807
|
|
- type: mrr_at_3
|
|
value: 30.989
|
|
- type: mrr_at_5
|
|
value: 33.039
|
|
- type: ndcg_at_1
|
|
value: 22.55
|
|
- type: ndcg_at_10
|
|
value: 40.842
|
|
- type: ndcg_at_100
|
|
value: 46.436
|
|
- type: ndcg_at_1000
|
|
value: 47.721999999999994
|
|
- type: ndcg_at_3
|
|
value: 33.209
|
|
- type: ndcg_at_5
|
|
value: 36.943
|
|
- type: precision_at_1
|
|
value: 22.55
|
|
- type: precision_at_10
|
|
value: 6.447
|
|
- type: precision_at_100
|
|
value: 0.9249999999999999
|
|
- type: precision_at_1000
|
|
value: 0.104
|
|
- type: precision_at_3
|
|
value: 14.136000000000001
|
|
- type: precision_at_5
|
|
value: 10.381
|
|
- type: recall_at_1
|
|
value: 21.926000000000002
|
|
- type: recall_at_10
|
|
value: 61.724999999999994
|
|
- type: recall_at_100
|
|
value: 87.604
|
|
- type: recall_at_1000
|
|
value: 97.421
|
|
- type: recall_at_3
|
|
value: 40.944
|
|
- type: recall_at_5
|
|
value: 49.915
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/mtop_domain
|
|
name: MTEB MTOPDomainClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
|
metrics:
|
|
- type: accuracy
|
|
value: 93.54765161878704
|
|
- type: f1
|
|
value: 93.3298945415573
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/mtop_intent
|
|
name: MTEB MTOPIntentClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
|
metrics:
|
|
- type: accuracy
|
|
value: 75.71591427268582
|
|
- type: f1
|
|
value: 59.32113870474471
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_massive_intent
|
|
name: MTEB MassiveIntentClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
|
metrics:
|
|
- type: accuracy
|
|
value: 75.83053127101547
|
|
- type: f1
|
|
value: 73.60757944876475
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_massive_scenario
|
|
name: MTEB MassiveScenarioClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
|
metrics:
|
|
- type: accuracy
|
|
value: 78.72562205783457
|
|
- type: f1
|
|
value: 78.63761662505502
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/medrxiv-clustering-p2p
|
|
name: MTEB MedrxivClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
|
metrics:
|
|
- type: v_measure
|
|
value: 33.37935633767996
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/medrxiv-clustering-s2s
|
|
name: MTEB MedrxivClusteringS2S
|
|
config: default
|
|
split: test
|
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
|
metrics:
|
|
- type: v_measure
|
|
value: 31.55270546130387
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/mind_small
|
|
name: MTEB MindSmallReranking
|
|
config: default
|
|
split: test
|
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
|
metrics:
|
|
- type: map
|
|
value: 30.462692753143834
|
|
- type: mrr
|
|
value: 31.497569753511563
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: nfcorpus
|
|
name: MTEB NFCorpus
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 5.646
|
|
- type: map_at_10
|
|
value: 12.498
|
|
- type: map_at_100
|
|
value: 15.486
|
|
- type: map_at_1000
|
|
value: 16.805999999999997
|
|
- type: map_at_3
|
|
value: 9.325
|
|
- type: map_at_5
|
|
value: 10.751
|
|
- type: mrr_at_1
|
|
value: 43.034
|
|
- type: mrr_at_10
|
|
value: 52.662
|
|
- type: mrr_at_100
|
|
value: 53.189
|
|
- type: mrr_at_1000
|
|
value: 53.25
|
|
- type: mrr_at_3
|
|
value: 50.929
|
|
- type: mrr_at_5
|
|
value: 51.92
|
|
- type: ndcg_at_1
|
|
value: 41.796
|
|
- type: ndcg_at_10
|
|
value: 33.477000000000004
|
|
- type: ndcg_at_100
|
|
value: 29.996000000000002
|
|
- type: ndcg_at_1000
|
|
value: 38.864
|
|
- type: ndcg_at_3
|
|
value: 38.940000000000005
|
|
- type: ndcg_at_5
|
|
value: 36.689
|
|
- type: precision_at_1
|
|
value: 43.034
|
|
- type: precision_at_10
|
|
value: 24.799
|
|
- type: precision_at_100
|
|
value: 7.432999999999999
|
|
- type: precision_at_1000
|
|
value: 1.9929999999999999
|
|
- type: precision_at_3
|
|
value: 36.842000000000006
|
|
- type: precision_at_5
|
|
value: 32.135999999999996
|
|
- type: recall_at_1
|
|
value: 5.646
|
|
- type: recall_at_10
|
|
value: 15.963
|
|
- type: recall_at_100
|
|
value: 29.492
|
|
- type: recall_at_1000
|
|
value: 61.711000000000006
|
|
- type: recall_at_3
|
|
value: 10.585
|
|
- type: recall_at_5
|
|
value: 12.753999999999998
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: nq
|
|
name: MTEB NQ
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 27.602
|
|
- type: map_at_10
|
|
value: 41.545
|
|
- type: map_at_100
|
|
value: 42.644999999999996
|
|
- type: map_at_1000
|
|
value: 42.685
|
|
- type: map_at_3
|
|
value: 37.261
|
|
- type: map_at_5
|
|
value: 39.706
|
|
- type: mrr_at_1
|
|
value: 31.141000000000002
|
|
- type: mrr_at_10
|
|
value: 44.139
|
|
- type: mrr_at_100
|
|
value: 44.997
|
|
- type: mrr_at_1000
|
|
value: 45.025999999999996
|
|
- type: mrr_at_3
|
|
value: 40.503
|
|
- type: mrr_at_5
|
|
value: 42.64
|
|
- type: ndcg_at_1
|
|
value: 31.141000000000002
|
|
- type: ndcg_at_10
|
|
value: 48.995
|
|
- type: ndcg_at_100
|
|
value: 53.788000000000004
|
|
- type: ndcg_at_1000
|
|
value: 54.730000000000004
|
|
- type: ndcg_at_3
|
|
value: 40.844
|
|
- type: ndcg_at_5
|
|
value: 44.955
|
|
- type: precision_at_1
|
|
value: 31.141000000000002
|
|
- type: precision_at_10
|
|
value: 8.233
|
|
- type: precision_at_100
|
|
value: 1.093
|
|
- type: precision_at_1000
|
|
value: 0.11800000000000001
|
|
- type: precision_at_3
|
|
value: 18.579
|
|
- type: precision_at_5
|
|
value: 13.533999999999999
|
|
- type: recall_at_1
|
|
value: 27.602
|
|
- type: recall_at_10
|
|
value: 69.216
|
|
- type: recall_at_100
|
|
value: 90.252
|
|
- type: recall_at_1000
|
|
value: 97.27
|
|
- type: recall_at_3
|
|
value: 47.987
|
|
- type: recall_at_5
|
|
value: 57.438
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: quora
|
|
name: MTEB QuoraRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 70.949
|
|
- type: map_at_10
|
|
value: 84.89999999999999
|
|
- type: map_at_100
|
|
value: 85.531
|
|
- type: map_at_1000
|
|
value: 85.548
|
|
- type: map_at_3
|
|
value: 82.027
|
|
- type: map_at_5
|
|
value: 83.853
|
|
- type: mrr_at_1
|
|
value: 81.69999999999999
|
|
- type: mrr_at_10
|
|
value: 87.813
|
|
- type: mrr_at_100
|
|
value: 87.917
|
|
- type: mrr_at_1000
|
|
value: 87.91799999999999
|
|
- type: mrr_at_3
|
|
value: 86.938
|
|
- type: mrr_at_5
|
|
value: 87.53999999999999
|
|
- type: ndcg_at_1
|
|
value: 81.75
|
|
- type: ndcg_at_10
|
|
value: 88.55499999999999
|
|
- type: ndcg_at_100
|
|
value: 89.765
|
|
- type: ndcg_at_1000
|
|
value: 89.871
|
|
- type: ndcg_at_3
|
|
value: 85.905
|
|
- type: ndcg_at_5
|
|
value: 87.41
|
|
- type: precision_at_1
|
|
value: 81.75
|
|
- type: precision_at_10
|
|
value: 13.403
|
|
- type: precision_at_100
|
|
value: 1.528
|
|
- type: precision_at_1000
|
|
value: 0.157
|
|
- type: precision_at_3
|
|
value: 37.597
|
|
- type: precision_at_5
|
|
value: 24.69
|
|
- type: recall_at_1
|
|
value: 70.949
|
|
- type: recall_at_10
|
|
value: 95.423
|
|
- type: recall_at_100
|
|
value: 99.509
|
|
- type: recall_at_1000
|
|
value: 99.982
|
|
- type: recall_at_3
|
|
value: 87.717
|
|
- type: recall_at_5
|
|
value: 92.032
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/reddit-clustering
|
|
name: MTEB RedditClustering
|
|
config: default
|
|
split: test
|
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
|
metrics:
|
|
- type: v_measure
|
|
value: 51.76962893449579
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/reddit-clustering-p2p
|
|
name: MTEB RedditClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
|
metrics:
|
|
- type: v_measure
|
|
value: 62.32897690686379
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: scidocs
|
|
name: MTEB SCIDOCS
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 4.478
|
|
- type: map_at_10
|
|
value: 11.994
|
|
- type: map_at_100
|
|
value: 13.977
|
|
- type: map_at_1000
|
|
value: 14.295
|
|
- type: map_at_3
|
|
value: 8.408999999999999
|
|
- type: map_at_5
|
|
value: 10.024
|
|
- type: mrr_at_1
|
|
value: 22.1
|
|
- type: mrr_at_10
|
|
value: 33.526
|
|
- type: mrr_at_100
|
|
value: 34.577000000000005
|
|
- type: mrr_at_1000
|
|
value: 34.632000000000005
|
|
- type: mrr_at_3
|
|
value: 30.217
|
|
- type: mrr_at_5
|
|
value: 31.962000000000003
|
|
- type: ndcg_at_1
|
|
value: 22.1
|
|
- type: ndcg_at_10
|
|
value: 20.191
|
|
- type: ndcg_at_100
|
|
value: 27.954
|
|
- type: ndcg_at_1000
|
|
value: 33.491
|
|
- type: ndcg_at_3
|
|
value: 18.787000000000003
|
|
- type: ndcg_at_5
|
|
value: 16.378999999999998
|
|
- type: precision_at_1
|
|
value: 22.1
|
|
- type: precision_at_10
|
|
value: 10.69
|
|
- type: precision_at_100
|
|
value: 2.1919999999999997
|
|
- type: precision_at_1000
|
|
value: 0.35200000000000004
|
|
- type: precision_at_3
|
|
value: 17.732999999999997
|
|
- type: precision_at_5
|
|
value: 14.499999999999998
|
|
- type: recall_at_1
|
|
value: 4.478
|
|
- type: recall_at_10
|
|
value: 21.657
|
|
- type: recall_at_100
|
|
value: 44.54
|
|
- type: recall_at_1000
|
|
value: 71.542
|
|
- type: recall_at_3
|
|
value: 10.778
|
|
- type: recall_at_5
|
|
value: 14.687
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sickr-sts
|
|
name: MTEB SICK-R
|
|
config: default
|
|
split: test
|
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 82.82325259156718
|
|
- type: cos_sim_spearman
|
|
value: 79.2463589100662
|
|
- type: euclidean_pearson
|
|
value: 80.48318380496771
|
|
- type: euclidean_spearman
|
|
value: 79.34451935199979
|
|
- type: manhattan_pearson
|
|
value: 80.39041824178759
|
|
- type: manhattan_spearman
|
|
value: 79.23002892700211
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts12-sts
|
|
name: MTEB STS12
|
|
config: default
|
|
split: test
|
|
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 85.74130231431258
|
|
- type: cos_sim_spearman
|
|
value: 78.36856568042397
|
|
- type: euclidean_pearson
|
|
value: 82.48301631890303
|
|
- type: euclidean_spearman
|
|
value: 78.28376980722732
|
|
- type: manhattan_pearson
|
|
value: 82.43552075450525
|
|
- type: manhattan_spearman
|
|
value: 78.22702443947126
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts13-sts
|
|
name: MTEB STS13
|
|
config: default
|
|
split: test
|
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 79.96138619461459
|
|
- type: cos_sim_spearman
|
|
value: 81.85436343502379
|
|
- type: euclidean_pearson
|
|
value: 81.82895226665367
|
|
- type: euclidean_spearman
|
|
value: 82.22707349602916
|
|
- type: manhattan_pearson
|
|
value: 81.66303369445873
|
|
- type: manhattan_spearman
|
|
value: 82.05030197179455
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts14-sts
|
|
name: MTEB STS14
|
|
config: default
|
|
split: test
|
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 80.05481244198648
|
|
- type: cos_sim_spearman
|
|
value: 80.85052504637808
|
|
- type: euclidean_pearson
|
|
value: 80.86728419744497
|
|
- type: euclidean_spearman
|
|
value: 81.033786401512
|
|
- type: manhattan_pearson
|
|
value: 80.90107531061103
|
|
- type: manhattan_spearman
|
|
value: 81.11374116827795
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts15-sts
|
|
name: MTEB STS15
|
|
config: default
|
|
split: test
|
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 84.615220756399
|
|
- type: cos_sim_spearman
|
|
value: 86.46858500002092
|
|
- type: euclidean_pearson
|
|
value: 86.08307800247586
|
|
- type: euclidean_spearman
|
|
value: 86.72691443870013
|
|
- type: manhattan_pearson
|
|
value: 85.96155594487269
|
|
- type: manhattan_spearman
|
|
value: 86.605909505275
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts16-sts
|
|
name: MTEB STS16
|
|
config: default
|
|
split: test
|
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 82.14363913634436
|
|
- type: cos_sim_spearman
|
|
value: 84.48430226487102
|
|
- type: euclidean_pearson
|
|
value: 83.75303424801902
|
|
- type: euclidean_spearman
|
|
value: 84.56762380734538
|
|
- type: manhattan_pearson
|
|
value: 83.6135447165928
|
|
- type: manhattan_spearman
|
|
value: 84.39898212616731
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts17-crosslingual-sts
|
|
name: MTEB STS17 (en-en)
|
|
config: en-en
|
|
split: test
|
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 85.09909252554525
|
|
- type: cos_sim_spearman
|
|
value: 85.70951402743276
|
|
- type: euclidean_pearson
|
|
value: 87.1991936239908
|
|
- type: euclidean_spearman
|
|
value: 86.07745840612071
|
|
- type: manhattan_pearson
|
|
value: 87.25039137549952
|
|
- type: manhattan_spearman
|
|
value: 85.99938746659761
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts22-crosslingual-sts
|
|
name: MTEB STS22 (en)
|
|
config: en
|
|
split: test
|
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 63.529332093413615
|
|
- type: cos_sim_spearman
|
|
value: 65.38177340147439
|
|
- type: euclidean_pearson
|
|
value: 66.35278011412136
|
|
- type: euclidean_spearman
|
|
value: 65.47147267032997
|
|
- type: manhattan_pearson
|
|
value: 66.71804682408693
|
|
- type: manhattan_spearman
|
|
value: 65.67406521423597
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/stsbenchmark-sts
|
|
name: MTEB STSBenchmark
|
|
config: default
|
|
split: test
|
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 82.45802942885662
|
|
- type: cos_sim_spearman
|
|
value: 84.8853341842566
|
|
- type: euclidean_pearson
|
|
value: 84.60915021096707
|
|
- type: euclidean_spearman
|
|
value: 85.11181242913666
|
|
- type: manhattan_pearson
|
|
value: 84.38600521210364
|
|
- type: manhattan_spearman
|
|
value: 84.89045417981723
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/scidocs-reranking
|
|
name: MTEB SciDocsRR
|
|
config: default
|
|
split: test
|
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
|
metrics:
|
|
- type: map
|
|
value: 85.92793380635129
|
|
- type: mrr
|
|
value: 95.85834191226348
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: scifact
|
|
name: MTEB SciFact
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 55.74400000000001
|
|
- type: map_at_10
|
|
value: 65.455
|
|
- type: map_at_100
|
|
value: 66.106
|
|
- type: map_at_1000
|
|
value: 66.129
|
|
- type: map_at_3
|
|
value: 62.719
|
|
- type: map_at_5
|
|
value: 64.441
|
|
- type: mrr_at_1
|
|
value: 58.667
|
|
- type: mrr_at_10
|
|
value: 66.776
|
|
- type: mrr_at_100
|
|
value: 67.363
|
|
- type: mrr_at_1000
|
|
value: 67.384
|
|
- type: mrr_at_3
|
|
value: 64.889
|
|
- type: mrr_at_5
|
|
value: 66.122
|
|
- type: ndcg_at_1
|
|
value: 58.667
|
|
- type: ndcg_at_10
|
|
value: 69.904
|
|
- type: ndcg_at_100
|
|
value: 72.807
|
|
- type: ndcg_at_1000
|
|
value: 73.423
|
|
- type: ndcg_at_3
|
|
value: 65.405
|
|
- type: ndcg_at_5
|
|
value: 67.86999999999999
|
|
- type: precision_at_1
|
|
value: 58.667
|
|
- type: precision_at_10
|
|
value: 9.3
|
|
- type: precision_at_100
|
|
value: 1.08
|
|
- type: precision_at_1000
|
|
value: 0.11299999999999999
|
|
- type: precision_at_3
|
|
value: 25.444
|
|
- type: precision_at_5
|
|
value: 17
|
|
- type: recall_at_1
|
|
value: 55.74400000000001
|
|
- type: recall_at_10
|
|
value: 82.122
|
|
- type: recall_at_100
|
|
value: 95.167
|
|
- type: recall_at_1000
|
|
value: 100
|
|
- type: recall_at_3
|
|
value: 70.14399999999999
|
|
- type: recall_at_5
|
|
value: 76.417
|
|
- task:
|
|
type: PairClassification
|
|
dataset:
|
|
type: mteb/sprintduplicatequestions-pairclassification
|
|
name: MTEB SprintDuplicateQuestions
|
|
config: default
|
|
split: test
|
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
|
metrics:
|
|
- type: cos_sim_accuracy
|
|
value: 99.86534653465347
|
|
- type: cos_sim_ap
|
|
value: 96.54142419791388
|
|
- type: cos_sim_f1
|
|
value: 93.07535641547861
|
|
- type: cos_sim_precision
|
|
value: 94.81327800829875
|
|
- type: cos_sim_recall
|
|
value: 91.4
|
|
- type: dot_accuracy
|
|
value: 99.86435643564356
|
|
- type: dot_ap
|
|
value: 96.53682260449868
|
|
- type: dot_f1
|
|
value: 92.98515104966718
|
|
- type: dot_precision
|
|
value: 95.27806925498426
|
|
- type: dot_recall
|
|
value: 90.8
|
|
- type: euclidean_accuracy
|
|
value: 99.86336633663366
|
|
- type: euclidean_ap
|
|
value: 96.5228676185697
|
|
- type: euclidean_f1
|
|
value: 92.9735234215886
|
|
- type: euclidean_precision
|
|
value: 94.70954356846472
|
|
- type: euclidean_recall
|
|
value: 91.3
|
|
- type: manhattan_accuracy
|
|
value: 99.85841584158416
|
|
- type: manhattan_ap
|
|
value: 96.50392760934032
|
|
- type: manhattan_f1
|
|
value: 92.84642321160581
|
|
- type: manhattan_precision
|
|
value: 92.8928928928929
|
|
- type: manhattan_recall
|
|
value: 92.80000000000001
|
|
- type: max_accuracy
|
|
value: 99.86534653465347
|
|
- type: max_ap
|
|
value: 96.54142419791388
|
|
- type: max_f1
|
|
value: 93.07535641547861
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/stackexchange-clustering
|
|
name: MTEB StackExchangeClustering
|
|
config: default
|
|
split: test
|
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
|
metrics:
|
|
- type: v_measure
|
|
value: 61.08285408766616
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/stackexchange-clustering-p2p
|
|
name: MTEB StackExchangeClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
|
metrics:
|
|
- type: v_measure
|
|
value: 35.640675309010604
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/stackoverflowdupquestions-reranking
|
|
name: MTEB StackOverflowDupQuestions
|
|
config: default
|
|
split: test
|
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
|
metrics:
|
|
- type: map
|
|
value: 53.20333913710715
|
|
- type: mrr
|
|
value: 54.088813555725324
|
|
- task:
|
|
type: Summarization
|
|
dataset:
|
|
type: mteb/summeval
|
|
name: MTEB SummEval
|
|
config: default
|
|
split: test
|
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 30.79465221925075
|
|
- type: cos_sim_spearman
|
|
value: 30.530816059163634
|
|
- type: dot_pearson
|
|
value: 31.364837244718043
|
|
- type: dot_spearman
|
|
value: 30.79726823684003
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: trec-covid
|
|
name: MTEB TRECCOVID
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 0.22599999999999998
|
|
- type: map_at_10
|
|
value: 1.735
|
|
- type: map_at_100
|
|
value: 8.978
|
|
- type: map_at_1000
|
|
value: 20.851
|
|
- type: map_at_3
|
|
value: 0.613
|
|
- type: map_at_5
|
|
value: 0.964
|
|
- type: mrr_at_1
|
|
value: 88
|
|
- type: mrr_at_10
|
|
value: 92.867
|
|
- type: mrr_at_100
|
|
value: 92.867
|
|
- type: mrr_at_1000
|
|
value: 92.867
|
|
- type: mrr_at_3
|
|
value: 92.667
|
|
- type: mrr_at_5
|
|
value: 92.667
|
|
- type: ndcg_at_1
|
|
value: 82
|
|
- type: ndcg_at_10
|
|
value: 73.164
|
|
- type: ndcg_at_100
|
|
value: 51.878
|
|
- type: ndcg_at_1000
|
|
value: 44.864
|
|
- type: ndcg_at_3
|
|
value: 79.184
|
|
- type: ndcg_at_5
|
|
value: 76.39
|
|
- type: precision_at_1
|
|
value: 88
|
|
- type: precision_at_10
|
|
value: 76.2
|
|
- type: precision_at_100
|
|
value: 52.459999999999994
|
|
- type: precision_at_1000
|
|
value: 19.692
|
|
- type: precision_at_3
|
|
value: 82.667
|
|
- type: precision_at_5
|
|
value: 80
|
|
- type: recall_at_1
|
|
value: 0.22599999999999998
|
|
- type: recall_at_10
|
|
value: 1.942
|
|
- type: recall_at_100
|
|
value: 12.342
|
|
- type: recall_at_1000
|
|
value: 41.42
|
|
- type: recall_at_3
|
|
value: 0.637
|
|
- type: recall_at_5
|
|
value: 1.034
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: webis-touche2020
|
|
name: MTEB Touche2020
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 3.567
|
|
- type: map_at_10
|
|
value: 13.116
|
|
- type: map_at_100
|
|
value: 19.39
|
|
- type: map_at_1000
|
|
value: 20.988
|
|
- type: map_at_3
|
|
value: 7.109
|
|
- type: map_at_5
|
|
value: 9.950000000000001
|
|
- type: mrr_at_1
|
|
value: 42.857
|
|
- type: mrr_at_10
|
|
value: 57.404999999999994
|
|
- type: mrr_at_100
|
|
value: 58.021
|
|
- type: mrr_at_1000
|
|
value: 58.021
|
|
- type: mrr_at_3
|
|
value: 54.762
|
|
- type: mrr_at_5
|
|
value: 56.19
|
|
- type: ndcg_at_1
|
|
value: 38.775999999999996
|
|
- type: ndcg_at_10
|
|
value: 30.359
|
|
- type: ndcg_at_100
|
|
value: 41.284
|
|
- type: ndcg_at_1000
|
|
value: 52.30200000000001
|
|
- type: ndcg_at_3
|
|
value: 36.744
|
|
- type: ndcg_at_5
|
|
value: 34.326
|
|
- type: precision_at_1
|
|
value: 42.857
|
|
- type: precision_at_10
|
|
value: 26.122
|
|
- type: precision_at_100
|
|
value: 8.082
|
|
- type: precision_at_1000
|
|
value: 1.559
|
|
- type: precision_at_3
|
|
value: 40.136
|
|
- type: precision_at_5
|
|
value: 35.510000000000005
|
|
- type: recall_at_1
|
|
value: 3.567
|
|
- type: recall_at_10
|
|
value: 19.045
|
|
- type: recall_at_100
|
|
value: 49.979
|
|
- type: recall_at_1000
|
|
value: 84.206
|
|
- type: recall_at_3
|
|
value: 8.52
|
|
- type: recall_at_5
|
|
value: 13.103000000000002
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/toxic_conversations_50k
|
|
name: MTEB ToxicConversationsClassification
|
|
config: default
|
|
split: test
|
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
|
metrics:
|
|
- type: accuracy
|
|
value: 68.8394
|
|
- type: ap
|
|
value: 13.454399712443099
|
|
- type: f1
|
|
value: 53.04963076364322
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/tweet_sentiment_extraction
|
|
name: MTEB TweetSentimentExtractionClassification
|
|
config: default
|
|
split: test
|
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
|
metrics:
|
|
- type: accuracy
|
|
value: 60.546123372948514
|
|
- type: f1
|
|
value: 60.86952793277713
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/twentynewsgroups-clustering
|
|
name: MTEB TwentyNewsgroupsClustering
|
|
config: default
|
|
split: test
|
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
|
metrics:
|
|
- type: v_measure
|
|
value: 49.10042955060234
|
|
- task:
|
|
type: PairClassification
|
|
dataset:
|
|
type: mteb/twittersemeval2015-pairclassification
|
|
name: MTEB TwitterSemEval2015
|
|
config: default
|
|
split: test
|
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
|
metrics:
|
|
- type: cos_sim_accuracy
|
|
value: 85.03308100375514
|
|
- type: cos_sim_ap
|
|
value: 71.08284605869684
|
|
- type: cos_sim_f1
|
|
value: 65.42539436255494
|
|
- type: cos_sim_precision
|
|
value: 64.14807302231237
|
|
- type: cos_sim_recall
|
|
value: 66.75461741424802
|
|
- type: dot_accuracy
|
|
value: 84.68736961316088
|
|
- type: dot_ap
|
|
value: 69.20524036530992
|
|
- type: dot_f1
|
|
value: 63.54893953365829
|
|
- type: dot_precision
|
|
value: 63.45698500394633
|
|
- type: dot_recall
|
|
value: 63.641160949868066
|
|
- type: euclidean_accuracy
|
|
value: 85.07480479227513
|
|
- type: euclidean_ap
|
|
value: 71.14592761009864
|
|
- type: euclidean_f1
|
|
value: 65.43814432989691
|
|
- type: euclidean_precision
|
|
value: 63.95465994962216
|
|
- type: euclidean_recall
|
|
value: 66.99208443271768
|
|
- type: manhattan_accuracy
|
|
value: 85.06288370984085
|
|
- type: manhattan_ap
|
|
value: 71.07289742593868
|
|
- type: manhattan_f1
|
|
value: 65.37585421412301
|
|
- type: manhattan_precision
|
|
value: 62.816147859922175
|
|
- type: manhattan_recall
|
|
value: 68.15303430079156
|
|
- type: max_accuracy
|
|
value: 85.07480479227513
|
|
- type: max_ap
|
|
value: 71.14592761009864
|
|
- type: max_f1
|
|
value: 65.43814432989691
|
|
- task:
|
|
type: PairClassification
|
|
dataset:
|
|
type: mteb/twitterurlcorpus-pairclassification
|
|
name: MTEB TwitterURLCorpus
|
|
config: default
|
|
split: test
|
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
|
metrics:
|
|
- type: cos_sim_accuracy
|
|
value: 87.79058485659952
|
|
- type: cos_sim_ap
|
|
value: 83.7183187008759
|
|
- type: cos_sim_f1
|
|
value: 75.86921142180798
|
|
- type: cos_sim_precision
|
|
value: 73.00683371298405
|
|
- type: cos_sim_recall
|
|
value: 78.96519864490298
|
|
- type: dot_accuracy
|
|
value: 87.0085768618776
|
|
- type: dot_ap
|
|
value: 81.87467488474279
|
|
- type: dot_f1
|
|
value: 74.04188363990559
|
|
- type: dot_precision
|
|
value: 72.10507114191901
|
|
- type: dot_recall
|
|
value: 76.08561749307053
|
|
- type: euclidean_accuracy
|
|
value: 87.8332751193387
|
|
- type: euclidean_ap
|
|
value: 83.83585648120315
|
|
- type: euclidean_f1
|
|
value: 76.02582177042369
|
|
- type: euclidean_precision
|
|
value: 73.36388371759989
|
|
- type: euclidean_recall
|
|
value: 78.88820449645827
|
|
- type: manhattan_accuracy
|
|
value: 87.87208444910156
|
|
- type: manhattan_ap
|
|
value: 83.8101950642973
|
|
- type: manhattan_f1
|
|
value: 75.90454195535027
|
|
- type: manhattan_precision
|
|
value: 72.44419564761039
|
|
- type: manhattan_recall
|
|
value: 79.71204188481676
|
|
- type: max_accuracy
|
|
value: 87.87208444910156
|
|
- type: max_ap
|
|
value: 83.83585648120315
|
|
- type: max_f1
|
|
value: 76.02582177042369
|
|
license: mit
|
|
language:
|
|
- en
|
|
---
|
|
|
|
|
|
**Recommend switching to newest [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5), which has more reasonable similarity distribution and same method of usage.**
|
|
|
|
<h1 align="center">FlagEmbedding</h1>
|
|
|
|
|
|
<h4 align="center">
|
|
<p>
|
|
<a href=#model-list>Model List</a> |
|
|
<a href=#frequently-asked-questions>FAQ</a> |
|
|
<a href=#usage>Usage</a> |
|
|
<a href="#evaluation">Evaluation</a> |
|
|
<a href="#train">Train</a> |
|
|
<a href="#citation">Citation</a> |
|
|
<a href="#license">License</a>
|
|
<p>
|
|
</h4>
|
|
|
|
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
|
|
|
|
|
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
|
|
|
FlagEmbedding focus on retrieval-augmented LLMs, consisting of following projects currently:
|
|
|
|
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
|
|
- **Dense Retrieval**: [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding), [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
|
|
- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
|
|
|
|
|
## News
|
|
|
|
- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
|
|
- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
|
|
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
|
|
- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
|
|
- 09/12/2023: New models:
|
|
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
|
|
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
|
|
|
|
|
|
<details>
|
|
<summary>More</summary>
|
|
<!-- ### More -->
|
|
|
|
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
|
|
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
|
|
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
|
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
|
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
|
|
|
</details>
|
|
|
|
|
|
## Model List
|
|
|
|
`bge` is short for `BAAI general embedding`.
|
|
|
|
| Model | Language | | Description | query instruction for retrieval [1] |
|
|
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
|
|
| [LM-Cocktail](https://huggingface.co/Shitao) | English | | fine-tuned models (Llama and BGE) which can be used to reproduce the results of LM-Cocktail | |
|
|
| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
|
|
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
|
|
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
|
|
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
|
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
|
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
|
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
|
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
|
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
|
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
|
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
|
|
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
|
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
|
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
|
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
|
|
|
|
|
[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
|
|
|
|
[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
|
|
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
|
|
|
|
All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI.
|
|
If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models .
|
|
|
|
|
|
## Frequently asked questions
|
|
|
|
<details>
|
|
<summary>1. How to fine-tune bge embedding model?</summary>
|
|
|
|
<!-- ### How to fine-tune bge embedding model? -->
|
|
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
|
|
Some suggestions:
|
|
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
|
|
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
|
|
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
|
|
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
|
|
|
|
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
|
|
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
|
|
|
|
Since we finetune the models by contrastive learning with a temperature of 0.01,
|
|
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
|
|
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
|
|
|
|
For downstream tasks, such as passage retrieval or semantic similarity,
|
|
**what matters is the relative order of the scores, not the absolute value.**
|
|
If you need to filter similar sentences based on a similarity threshold,
|
|
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary>3. When does the query instruction need to be used</summary>
|
|
|
|
<!-- ### When does the query instruction need to be used -->
|
|
|
|
For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
|
|
No instruction only has a slight degradation in retrieval performance compared with using instruction.
|
|
So you can generate embedding without instruction in all cases for convenience.
|
|
|
|
For a retrieval task that uses short queries to find long related documents,
|
|
it is recommended to add instructions for these short queries.
|
|
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
|
|
In all cases, the documents/passages do not need to add the instruction.
|
|
|
|
</details>
|
|
|
|
|
|
## Usage
|
|
|
|
### Usage for Embedding Model
|
|
|
|
Here are some examples for using `bge` models with
|
|
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
|
|
|
#### Using FlagEmbedding
|
|
```
|
|
pip install -U FlagEmbedding
|
|
```
|
|
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
|
|
|
```python
|
|
from FlagEmbedding import FlagModel
|
|
sentences_1 = ["样例数据-1", "样例数据-2"]
|
|
sentences_2 = ["样例数据-3", "样例数据-4"]
|
|
model = FlagModel('BAAI/bge-large-zh-v1.5',
|
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
|
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
|
embeddings_1 = model.encode(sentences_1)
|
|
embeddings_2 = model.encode(sentences_2)
|
|
similarity = embeddings_1 @ embeddings_2.T
|
|
print(similarity)
|
|
|
|
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
|
|
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
|
queries = ['query_1', 'query_2']
|
|
passages = ["样例文档-1", "样例文档-2"]
|
|
q_embeddings = model.encode_queries(queries)
|
|
p_embeddings = model.encode(passages)
|
|
scores = q_embeddings @ p_embeddings.T
|
|
```
|
|
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
|
|
|
|
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
|
|
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
|
|
|
|
|
#### Using Sentence-Transformers
|
|
|
|
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
|
|
|
|
```
|
|
pip install -U sentence-transformers
|
|
```
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
sentences_1 = ["样例数据-1", "样例数据-2"]
|
|
sentences_2 = ["样例数据-3", "样例数据-4"]
|
|
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
|
|
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
|
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
|
similarity = embeddings_1 @ embeddings_2.T
|
|
print(similarity)
|
|
```
|
|
For s2p(short query to long passage) retrieval task,
|
|
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
|
But the instruction is not needed for passages.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
queries = ['query_1', 'query_2']
|
|
passages = ["样例文档-1", "样例文档-2"]
|
|
instruction = "为这个句子生成表示以用于检索相关文章:"
|
|
|
|
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
|
|
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
|
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
|
scores = q_embeddings @ p_embeddings.T
|
|
```
|
|
|
|
#### Using Langchain
|
|
|
|
You can use `bge` in langchain like this:
|
|
```python
|
|
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
|
model_name = "BAAI/bge-large-en-v1.5"
|
|
model_kwargs = {'device': 'cuda'}
|
|
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
|
model = HuggingFaceBgeEmbeddings(
|
|
model_name=model_name,
|
|
model_kwargs=model_kwargs,
|
|
encode_kwargs=encode_kwargs,
|
|
query_instruction="为这个句子生成表示以用于检索相关文章:"
|
|
)
|
|
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
|
|
```
|
|
|
|
|
|
#### Using HuggingFace Transformers
|
|
|
|
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
|
|
|
|
```python
|
|
from transformers import AutoTokenizer, AutoModel
|
|
import torch
|
|
# Sentences we want sentence embeddings for
|
|
sentences = ["样例数据-1", "样例数据-2"]
|
|
|
|
# Load model from HuggingFace Hub
|
|
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
|
|
model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
|
|
model.eval()
|
|
|
|
# Tokenize sentences
|
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
|
|
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
|
|
|
# Compute token embeddings
|
|
with torch.no_grad():
|
|
model_output = model(**encoded_input)
|
|
# Perform pooling. In this case, cls pooling.
|
|
sentence_embeddings = model_output[0][:, 0]
|
|
# normalize embeddings
|
|
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
|
print("Sentence embeddings:", sentence_embeddings)
|
|
```
|
|
|
|
### Usage for Reranker
|
|
|
|
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
|
|
You can get a relevance score by inputting query and passage to the reranker.
|
|
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
|
|
|
|
|
|
#### Using FlagEmbedding
|
|
```
|
|
pip install -U FlagEmbedding
|
|
```
|
|
|
|
Get relevance scores (higher scores indicate more relevance):
|
|
```python
|
|
from FlagEmbedding import FlagReranker
|
|
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
|
|
|
score = reranker.compute_score(['query', 'passage'])
|
|
print(score)
|
|
|
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
|
print(scores)
|
|
```
|
|
|
|
|
|
#### Using Huggingface transformers
|
|
|
|
```python
|
|
import torch
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
|
|
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
|
|
model.eval()
|
|
|
|
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
|
with torch.no_grad():
|
|
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
|
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
|
print(scores)
|
|
```
|
|
|
|
## Evaluation
|
|
|
|
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
|
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
|
|
|
- **MTEB**:
|
|
|
|
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
|
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
|
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
|
|
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
|
|
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
|
|
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
|
|
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
|
|
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
|
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
|
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
|
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
|
|
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
|
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
|
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
|
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
|
|
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
|
|
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
|
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
|
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
|
|
|
|
|
|
|
- **C-MTEB**:
|
|
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
|
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
|
|
|
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
|
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
|
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
|
|
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
|
|
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
|
|
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
|
|
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
|
|
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
|
|
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
|
|
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
|
|
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
|
|
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
|
|
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
|
|
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
|
|
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
|
|
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
|
|
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
|
|
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
|
|
|
|
|
|
- **Reranking**:
|
|
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
|
|
|
|
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|
|
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
|
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
|
|
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
|
|
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
|
|
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
|
|
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
|
|
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
|
|
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
|
|
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
|
|
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
|
|
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
|
|
|
|
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
|
|
|
|
## Train
|
|
|
|
### BAAI Embedding
|
|
|
|
We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
|
|
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
|
|
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
|
|
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
|
|
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
|
|
|
|
|
|
|
### BGE Reranker
|
|
|
|
Cross-encoder will perform full-attention over the input pair,
|
|
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
|
|
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
|
|
We train the cross-encoder on a multilingual pair data,
|
|
The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
|
|
More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
|
|
|
|
|
|
|
|
|
## Citation
|
|
|
|
If you find this repository useful, please consider giving a star :star: and citation
|
|
|
|
```
|
|
@misc{bge_embedding,
|
|
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
|
year={2023},
|
|
eprint={2309.07597},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL}
|
|
}
|
|
```
|
|
|
|
## License
|
|
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
|
|
|
|