bart-base-squad-qg / README.md
ram02's picture
Update README.md
edcb3fa verified
metadata
language:
  - en
datasets:
  - squad
model-index:
  - name: alinet/bart-base-squad-qg
    results:
      - task:
          type: text2text-generation
          name: Question Generation
        dataset:
          name: MRQA
          type: mrqa
        metrics:
          - type: bertscore
            value: 0.6818813686383791
            name: BERTScore F1
          - type: bertscore
            value: 0.6918038470502067
            name: BERTScore Precision
          - type: bertscore
            value: 0.6755750492952126
            name: BERTScore Recall
      - task:
          type: text2text-generation
          name: Question Generation
        dataset:
          name: Spoken-SQuAD
          type: alinet/spoken_squad
        metrics:
          - type: bertscore
            value: 0.6037420180342389
            name: BERTScore F1
          - type: bertscore
            value: 0.5958670210949816
            name: BERTScore Precision
          - type: bertscore
            value: 0.6153761332016946
            name: BERTScore Recall

A question generation model trained on SQuAD dataset.

Example usage:

from transformers import BartConfig, BartForConditionalGeneration, BartTokenizer

model_name = "alinet/bart-base-squad-qg"

tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name) 

def run_model(input_string, **generator_args):
  input_ids = tokenizer.encode(input_string, return_tensors="pt")
  res = model.generate(input_ids, **generator_args)
  output = tokenizer.batch_decode(res, skip_special_tokens=True)
  print(output)

run_model("Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.", max_length=32, num_beams=4)
# ['What is the Stanford Question Answering Dataset?']