alitavanaali's picture
update model card README.md
ebad626
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - sroie
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: music_layoutlmv3_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: sroie
          type: sroie
          config: discharge
          split: test
          args: discharge
        metrics:
          - name: Precision
            type: precision
            value: 0.9626865671641791
          - name: Recall
            type: recall
            value: 0.9772727272727273
          - name: F1
            type: f1
            value: 0.9699248120300752
          - name: Accuracy
            type: accuracy
            value: 0.9990407673860912

music_layoutlmv3_model

This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0083
  • Precision: 0.9627
  • Recall: 0.9773
  • F1: 0.9699
  • Accuracy: 0.9990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 8.33 100 0.0191 0.9338 0.9621 0.9478 0.9981
No log 16.67 200 0.0120 0.9412 0.9697 0.9552 0.9981
No log 25.0 300 0.0125 0.9412 0.9697 0.9552 0.9981
No log 33.33 400 0.0101 0.9412 0.9697 0.9552 0.9981
0.0527 41.67 500 0.0121 0.9412 0.9697 0.9552 0.9981
0.0527 50.0 600 0.0083 0.9627 0.9773 0.9699 0.9990
0.0527 58.33 700 0.0082 0.9627 0.9773 0.9699 0.9990
0.0527 66.67 800 0.0082 0.9627 0.9773 0.9699 0.9990
0.0527 75.0 900 0.0083 0.9627 0.9773 0.9699 0.9990
0.0006 83.33 1000 0.0083 0.9627 0.9773 0.9699 0.9990

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.2.2
  • Tokenizers 0.13.2