allenpoe's picture
End of training
60c24c5 verified
|
raw
history blame
2.38 kB
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Jzuluaga/atcosim_corpus
metrics:
  - wer
model-index:
  - name: Whisper Base ATCOSIM
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: atcosim_corpus_numbers_converted
          type: Jzuluaga/atcosim_corpus
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 8.400080770007404

Whisper Base ATCOSIM

This model is a fine-tuned version of openai/whisper-small on the atcosim_corpus_numbers_converted dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0493
  • Wer: 8.4001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.5879 0.2092 100 1.3381 79.2825
0.6066 0.4184 200 0.5917 21.4916
0.1067 0.6276 300 0.1257 15.2319
0.0632 0.8368 400 0.0855 15.0973
0.0366 1.0460 500 0.0768 11.7655
0.0184 1.2552 600 0.0685 15.9992
0.0345 1.4644 700 0.0629 9.5578
0.0279 1.6736 800 0.0543 9.8607
0.0186 1.8828 900 0.0499 9.6655
0.0067 2.0921 1000 0.0493 8.4001

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1