metadata
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- bitsandbytes
- quantized
- 8bit
- Mistral
- Mistral-7B
- bnb
Model Card for alokabhishek/Mistral-7B-Instruct-v0.2-bnb-8bit
This repo contains 8-bit quantized (using bitsandbytes) model Mistral AI_'s Mistral-7B-Instruct-v0.2
Model Details
- Model creator: Mistral AI_
- Original model: Mistral-7B-Instruct-v0.2
About 8 bit quantization using bitsandbytes
QLoRA: Efficient Finetuning of Quantized LLMs: arXiv - QLoRA: Efficient Finetuning of Quantized LLMs
Hugging Face Blog post on 8-bit quantization using bitsandbytes: A Gentle Introduction to 8-bit Matrix Multiplication for transformers at scale using Hugging Face Transformers, Accelerate and bitsandbytes
bitsandbytes github repo: bitsandbytes github repo
How to Get Started with the Model
Use the code below to get started with the model.
How to run from Python code
First install the package
!pip install --quiet bitsandbytes
!pip install --quiet --upgrade transformers # Install latest version of transformers
!pip install --quiet --upgrade accelerate
!pip install --quiet sentencepiece
pip install flash-attn --no-build-isolation
Import
import torch
import os
from torch import bfloat16
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, LlamaForCausalLM
Use a pipeline as a high-level helper
model_id_mistral = "alokabhishek/Mistral-7B-Instruct-v0.2-bnb-8bit"
tokenizer_mistral = AutoTokenizer.from_pretrained(model_id_mistral, use_fast=True)
model_mistral = AutoModelForCausalLM.from_pretrained(
model_id_mistral,
device_map="auto"
)
pipe_mistral = pipeline(model=model_mistral, tokenizer=tokenizer_mistral, task='text-generation')
prompt_mistral = "Tell me a funny joke about Large Language Models meeting a Blackhole in an intergalactic Bar."
output_mistral = pipe_llama(prompt_mistral, max_new_tokens=512)
print(output_mistral[0]["generated_text"])
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Evaluation
Metrics
[More Information Needed]
Results
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]