Model Card for Qwen2.5-0.5B-PRM-RAD-balanced-V4
This model is a fine-tuned version of Qwen/Qwen2.5-0.5B. It has been trained using TRL.
Quick start
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="alothomas/Qwen2.5-0.5B-PRM-RAD-balanced-V4", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
Training procedure
This model was trained with PRM.
Framework versions
- TRL: 0.15.1
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citations
Cite PRM as:
@article{uesato2022solving,
title = {{Solving Math Word Problems With Process- and Outcome-Based Feedback}},
author = {Uesato, Jonathan and Kushman, Nate and Kumar, Ramana and Song, Francis and Siegel, Noah and Wang, Lisa and Creswell, Antonia and Irving, Geoffrey and Higgins, Irina},
year = 2022,
journal = {arXiv preprint arXiv:2211.14275}
}
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for alothomas/Qwen2.5-0.5B-PRM-RAD-balanced-V4
Base model
Qwen/Qwen2.5-0.5B