alphapie's picture
End of training
dc63ed6 verified
metadata
library_name: transformers
base_model: rohanrajpal/bert-base-codemixed-uncased-sentiment
tags:
  - generated_from_trainer
model-index:
  - name: mlm-code-roman-finetuned-final
    results: []

mlm-code-roman-finetuned-final

This model is a fine-tuned version of rohanrajpal/bert-base-codemixed-uncased-sentiment on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2295
  • Model Preparation Time: 0.0031

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time
4.8669 1.0 1834 4.6996 0.0031
4.2832 2.0 3668 4.1303 0.0031
3.9681 3.0 5502 3.9828 0.0031
3.8238 4.0 7336 nan 0.0031
3.8079 5.0 9170 3.6848 0.0031
3.5443 6.0 11004 nan 0.0031
3.4345 7.0 12838 3.6615 0.0031
3.3339 8.0 14672 nan 0.0031
3.2448 9.0 16506 3.5461 0.0031
3.1693 10.0 18340 3.4980 0.0031
3.2229 11.0 20174 nan 0.0031
3.0313 12.0 22008 3.4317 0.0031
2.9187 13.0 23842 3.4374 0.0031
2.7454 14.0 25676 3.3087 0.0031
2.8174 15.0 27510 nan 0.0031
2.6992 16.0 29344 3.2808 0.0031
2.7873 17.0 31178 nan 0.0031
2.7171 18.0 33012 3.3550 0.0031
2.6304 19.0 34846 3.1810 0.0031
2.5512 20.0 36680 3.4333 0.0031
2.4428 21.0 38514 3.2822 0.0031
2.4032 22.0 40348 3.2255 0.0031
2.3325 23.0 42182 nan 0.0031
2.3242 24.0 44016 nan 0.0031
2.2707 25.0 45850 3.2783 0.0031
2.2549 26.0 47684 3.1391 0.0031
2.1746 27.0 49518 3.2615 0.0031
2.1261 28.0 51352 3.3844 0.0031
2.131 29.0 53186 nan 0.0031
2.0258 30.0 55020 nan 0.0031
2.0013 31.0 56854 3.2128 0.0031
1.9835 32.0 58688 3.2159 0.0031
1.9533 33.0 60522 3.1775 0.0031
1.8876 34.0 62356 nan 0.0031
1.8624 35.0 64190 nan 0.0031
1.8181 36.0 66024 nan 0.0031
1.8068 37.0 67858 3.2109 0.0031
1.7557 38.0 69692 3.0247 0.0031
1.6394 39.0 71526 nan 0.0031
1.7325 40.0 73360 3.1127 0.0031
1.7365 41.0 75194 nan 0.0031
1.6807 42.0 77028 3.0874 0.0031
1.5981 43.0 78862 3.0828 0.0031
1.6304 44.0 80696 3.1521 0.0031
1.568 45.0 82530 3.2340 0.0031
1.5382 46.0 84364 nan 0.0031
1.387 47.0 86198 3.2172 0.0031
1.5521 48.0 88032 3.1709 0.0031
1.4808 49.0 89866 nan 0.0031
1.4629 50.0 91700 nan 0.0031

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.2.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.1