import gradio as gr import wave import matplotlib.pyplot as plt import numpy as np from extract_features import * import pickle import soundfile import librosa
classifier = pickle.load(open('finalized_rf.sav', 'rb'))
def emotion_predict(input): input_features = extract_feature(input, mfcc=True, chroma=True, mel=True, contrast=True, tonnetz=True) rf_prediction = classifier.predict(input_features.reshape(1,-1)) if rf_prediction == 'happy': return 'Happy π' elif rf_prediction == 'neutral': return 'Neutral π' elif rf_prediction == 'sad': return 'Sad π’' else: return 'Angry π€'
def plot_fig(input): wav = wave.open(input, 'r')
raw = wav.readframes(-1) raw = np.frombuffer(raw, "int16") sampleRate = wav.getframerate()
Time = np.linspace(0, len(raw)/sampleRate, num=len(raw))
fig = plt.figure()
plt.rcParams["figure.figsize"] = (50,15)
plt.title("Waveform Of the Audio", fontsize=25)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.ylabel("Amplitude", fontsize=25)
plt.plot(Time, raw, color='red')
return fig
with gr.Blocks() as app: gr.Markdown( """ # Speech Emotion Detector π΅π This application classifies inputted audio π according to the verbal emotion into four categories: 1. Happy π 2. Neutral π 3. Sad π’ 4. Angry π€ """ ) with gr.Tab("Record Audio"): record_input = gr.Audio(source="microphone", type="filepath")
with gr.Accordion("Audio Visualization", open=False):
gr.Markdown(
"""
### Visualization will work only after Audio has been submitted
"""
)
plot_record = gr.Button("Display Audio Signal")
plot_record_c = gr.Plot(label='Waveform Of the Audio')
record_button = gr.Button("Detect Emotion")
record_output = gr.Text(label = 'Emotion Detected')
with gr.Tab("Upload Audio File"): gr.Markdown( """ ## Uploaded Audio should be of .wav format """ )
upload_input = gr.Audio(type="filepath")
with gr.Accordion("Audio Visualization", open=False):
gr.Markdown(
"""
### Visualization will work only after Audio has been submitted
"""
)
plot_upload = gr.Button("Display Audio Signal")
plot_upload_c = gr.Plot(label='Waveform Of the Audio')
upload_button = gr.Button("Detect Emotion")
upload_output = gr.Text(label = 'Emotion Detected')
record_button.click(emotion_predict, inputs=record_input, outputs=record_output) upload_button.click(emotion_predict, inputs=upload_input, outputs=upload_output) plot_record.click(plot_fig, inputs=record_input, outputs=plot_record_c) plot_upload.click(plot_fig, inputs=upload_input, outputs=plot_upload_c)
app.launch()