RoBERTa-Base-SE2025T11A-sun-v20250110160608
This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2878
- F1 Macro: 0.6431
- F1 Micro: 0.6691
- F1 Weighted: 0.6626
- F1 Samples: 0.6731
- F1 Label Marah: 0.5405
- F1 Label Jijik: 0.5739
- F1 Label Takut: 0.6292
- F1 Label Senang: 0.8438
- F1 Label Sedih: 0.7704
- F1 Label Terkejut: 0.5593
- F1 Label Biasa: 0.5846
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | F1 Samples | F1 Label Marah | F1 Label Jijik | F1 Label Takut | F1 Label Senang | F1 Label Sedih | F1 Label Terkejut | F1 Label Biasa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4912 | 0.1133 | 100 | 0.4182 | 0.2076 | 0.3657 | 0.2621 | 0.2732 | 0.0 | 0.0 | 0.2 | 0.7451 | 0.5082 | 0.0 | 0.0 |
0.426 | 0.2265 | 200 | 0.3814 | 0.2080 | 0.3874 | 0.2689 | 0.2877 | 0.1471 | 0.0 | 0.0364 | 0.7946 | 0.4783 | 0.0 | 0.0 |
0.3779 | 0.3398 | 300 | 0.3616 | 0.2978 | 0.4226 | 0.3547 | 0.3187 | 0.3457 | 0.0 | 0.3125 | 0.7795 | 0.4 | 0.2469 | 0.0 |
0.391 | 0.4530 | 400 | 0.3399 | 0.3609 | 0.4571 | 0.4121 | 0.3466 | 0.2785 | 0.0952 | 0.4444 | 0.7101 | 0.6727 | 0.3256 | 0.0 |
0.3671 | 0.5663 | 500 | 0.3166 | 0.4355 | 0.5560 | 0.4909 | 0.4977 | 0.5344 | 0.0 | 0.5333 | 0.8020 | 0.75 | 0.3778 | 0.0513 |
0.3414 | 0.6795 | 600 | 0.3191 | 0.4739 | 0.5597 | 0.5218 | 0.4831 | 0.3918 | 0.5055 | 0.5385 | 0.7735 | 0.7344 | 0.3736 | 0.0 |
0.3169 | 0.7928 | 700 | 0.3031 | 0.5610 | 0.6133 | 0.5884 | 0.5705 | 0.5385 | 0.4598 | 0.5778 | 0.8116 | 0.7059 | 0.4255 | 0.4082 |
0.338 | 0.9060 | 800 | 0.2884 | 0.5513 | 0.6309 | 0.5963 | 0.5849 | 0.5714 | 0.3333 | 0.575 | 0.8586 | 0.7742 | 0.5138 | 0.2326 |
0.3488 | 1.0193 | 900 | 0.2938 | 0.5652 | 0.6120 | 0.5924 | 0.5735 | 0.5053 | 0.5217 | 0.5570 | 0.8152 | 0.7361 | 0.4130 | 0.4082 |
0.2595 | 1.1325 | 1000 | 0.2819 | 0.6285 | 0.6624 | 0.6483 | 0.6431 | 0.5913 | 0.5347 | 0.5647 | 0.8358 | 0.7717 | 0.5149 | 0.5862 |
0.2559 | 1.2458 | 1100 | 0.2843 | 0.6127 | 0.6590 | 0.6428 | 0.6397 | 0.5946 | 0.6 | 0.5783 | 0.85 | 0.75 | 0.5161 | 0.4 |
0.2746 | 1.3590 | 1200 | 0.2908 | 0.6165 | 0.6431 | 0.6344 | 0.6228 | 0.5303 | 0.6034 | 0.575 | 0.8118 | 0.7746 | 0.4646 | 0.5556 |
0.2642 | 1.4723 | 1300 | 0.2787 | 0.6354 | 0.665 | 0.6550 | 0.6515 | 0.5645 | 0.5806 | 0.5610 | 0.8211 | 0.7826 | 0.5614 | 0.5763 |
0.2267 | 1.5855 | 1400 | 0.2915 | 0.6359 | 0.6733 | 0.6578 | 0.6664 | 0.5981 | 0.5833 | 0.5647 | 0.8447 | 0.7939 | 0.5149 | 0.5517 |
0.2262 | 1.6988 | 1500 | 0.2844 | 0.6307 | 0.6667 | 0.6518 | 0.6594 | 0.5714 | 0.5818 | 0.6 | 0.8497 | 0.7552 | 0.5049 | 0.5517 |
0.292 | 1.8120 | 1600 | 0.2814 | 0.6270 | 0.66 | 0.6506 | 0.6516 | 0.5849 | 0.5487 | 0.6067 | 0.8449 | 0.7591 | 0.5283 | 0.5161 |
0.2596 | 1.9253 | 1700 | 0.2714 | 0.6431 | 0.6716 | 0.6653 | 0.6658 | 0.5778 | 0.5652 | 0.6364 | 0.8387 | 0.7939 | 0.5586 | 0.5312 |
0.2198 | 2.0385 | 1800 | 0.2753 | 0.6391 | 0.6700 | 0.6588 | 0.6571 | 0.56 | 0.6154 | 0.5977 | 0.8370 | 0.7692 | 0.5321 | 0.5625 |
0.1714 | 2.1518 | 1900 | 0.2837 | 0.6430 | 0.6716 | 0.6629 | 0.6753 | 0.5536 | 0.5763 | 0.6222 | 0.8542 | 0.7820 | 0.5283 | 0.5846 |
0.183 | 2.2650 | 2000 | 0.2859 | 0.6247 | 0.6544 | 0.6458 | 0.6529 | 0.5299 | 0.5981 | 0.5882 | 0.8242 | 0.7703 | 0.5310 | 0.5312 |
0.1722 | 2.3783 | 2100 | 0.2876 | 0.6376 | 0.67 | 0.6572 | 0.6639 | 0.5631 | 0.58 | 0.6 | 0.8497 | 0.7770 | 0.5091 | 0.5846 |
0.1822 | 2.4915 | 2200 | 0.2919 | 0.6309 | 0.6593 | 0.6506 | 0.6568 | 0.5357 | 0.5946 | 0.5814 | 0.8241 | 0.7742 | 0.5439 | 0.5625 |
0.187 | 2.6048 | 2300 | 0.2891 | 0.6473 | 0.6691 | 0.6645 | 0.6658 | 0.5424 | 0.6061 | 0.6452 | 0.8261 | 0.7737 | 0.5528 | 0.5846 |
0.1755 | 2.7180 | 2400 | 0.2904 | 0.6466 | 0.6731 | 0.6660 | 0.6805 | 0.5505 | 0.5882 | 0.6292 | 0.8454 | 0.7571 | 0.5714 | 0.5846 |
0.1542 | 2.8313 | 2500 | 0.2863 | 0.6533 | 0.6788 | 0.6723 | 0.6822 | 0.5455 | 0.6 | 0.6522 | 0.8482 | 0.7761 | 0.5667 | 0.5846 |
0.1871 | 2.9445 | 2600 | 0.2878 | 0.6431 | 0.6691 | 0.6626 | 0.6731 | 0.5405 | 0.5739 | 0.6292 | 0.8438 | 0.7704 | 0.5593 | 0.5846 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.