RoBERTa-Base-SE2025T11A-sun-v20250110165021
This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4862
- F1 Macro: 0.6552
- F1 Micro: 0.6756
- F1 Weighted: 0.6746
- F1 Samples: 0.6908
- F1 Label Marah: 0.5672
- F1 Label Jijik: 0.5667
- F1 Label Takut: 0.6458
- F1 Label Senang: 0.8557
- F1 Label Sedih: 0.7639
- F1 Label Terkejut: 0.5846
- F1 Label Biasa: 0.6027
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | F1 Samples | F1 Label Marah | F1 Label Jijik | F1 Label Takut | F1 Label Senang | F1 Label Sedih | F1 Label Terkejut | F1 Label Biasa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4911 | 0.1133 | 100 | 0.4184 | 0.2071 | 0.3651 | 0.2613 | 0.2732 | 0.0 | 0.0 | 0.2 | 0.7415 | 0.5082 | 0.0 | 0.0 |
0.4262 | 0.2265 | 200 | 0.3828 | 0.2041 | 0.3847 | 0.2651 | 0.2849 | 0.1194 | 0.0 | 0.0364 | 0.7946 | 0.4783 | 0.0 | 0.0 |
0.3783 | 0.3398 | 300 | 0.3642 | 0.2928 | 0.4193 | 0.3497 | 0.3160 | 0.3457 | 0.0 | 0.3125 | 0.7817 | 0.3415 | 0.2683 | 0.0 |
0.3916 | 0.4530 | 400 | 0.3407 | 0.3521 | 0.4463 | 0.4040 | 0.3374 | 0.3 | 0.0923 | 0.3768 | 0.7030 | 0.6667 | 0.3256 | 0.0 |
0.3682 | 0.5663 | 500 | 0.3155 | 0.4366 | 0.5528 | 0.4916 | 0.5050 | 0.5135 | 0.0351 | 0.5287 | 0.8040 | 0.7458 | 0.3778 | 0.0513 |
0.3437 | 0.6795 | 600 | 0.3227 | 0.4874 | 0.5687 | 0.5355 | 0.5046 | 0.3878 | 0.5045 | 0.5679 | 0.7717 | 0.7541 | 0.4255 | 0.0 |
0.3167 | 0.7928 | 700 | 0.3027 | 0.5789 | 0.6170 | 0.5989 | 0.5877 | 0.5577 | 0.4898 | 0.5806 | 0.8 | 0.6897 | 0.4255 | 0.5091 |
0.3391 | 0.9060 | 800 | 0.2896 | 0.5744 | 0.6345 | 0.6097 | 0.5984 | 0.5645 | 0.3846 | 0.575 | 0.8515 | 0.7705 | 0.5 | 0.375 |
0.3556 | 1.0193 | 900 | 0.2969 | 0.5658 | 0.6144 | 0.5933 | 0.5744 | 0.4651 | 0.5143 | 0.5455 | 0.8342 | 0.7361 | 0.4255 | 0.44 |
0.2621 | 1.1325 | 1000 | 0.2881 | 0.6367 | 0.6675 | 0.6541 | 0.6472 | 0.6050 | 0.5743 | 0.5814 | 0.8406 | 0.7304 | 0.5149 | 0.6102 |
0.2574 | 1.2458 | 1100 | 0.2947 | 0.5891 | 0.6482 | 0.6264 | 0.6312 | 0.5962 | 0.5686 | 0.5714 | 0.8416 | 0.7692 | 0.5039 | 0.2727 |
0.2768 | 1.3590 | 1200 | 0.2987 | 0.6131 | 0.6403 | 0.6333 | 0.6164 | 0.5323 | 0.5965 | 0.575 | 0.7853 | 0.7832 | 0.5192 | 0.5 |
0.2641 | 1.4723 | 1300 | 0.2959 | 0.6177 | 0.6494 | 0.6399 | 0.6472 | 0.4885 | 0.6392 | 0.5526 | 0.8333 | 0.7448 | 0.5391 | 0.5263 |
0.2326 | 1.5855 | 1400 | 0.3074 | 0.6090 | 0.6459 | 0.6298 | 0.6399 | 0.5766 | 0.5789 | 0.5366 | 0.8286 | 0.7097 | 0.4902 | 0.5424 |
0.2298 | 1.6988 | 1500 | 0.2972 | 0.6252 | 0.6599 | 0.6435 | 0.6504 | 0.56 | 0.5417 | 0.6061 | 0.8390 | 0.7538 | 0.4854 | 0.5902 |
0.3074 | 1.8120 | 1600 | 0.2962 | 0.6125 | 0.6394 | 0.6342 | 0.6311 | 0.5620 | 0.5741 | 0.6136 | 0.8022 | 0.7424 | 0.5143 | 0.4789 |
0.2676 | 1.9253 | 1700 | 0.2975 | 0.6251 | 0.6528 | 0.6474 | 0.6451 | 0.5535 | 0.5057 | 0.6118 | 0.8298 | 0.8031 | 0.5321 | 0.5397 |
0.2335 | 2.0385 | 1800 | 0.2842 | 0.6389 | 0.6684 | 0.6573 | 0.6571 | 0.56 | 0.6 | 0.5882 | 0.8306 | 0.7857 | 0.5234 | 0.5846 |
0.1709 | 2.1518 | 1900 | 0.3034 | 0.6385 | 0.6659 | 0.6568 | 0.6740 | 0.5234 | 0.5846 | 0.6222 | 0.8454 | 0.7737 | 0.5234 | 0.5970 |
0.1693 | 2.2650 | 2000 | 0.3148 | 0.6256 | 0.6521 | 0.6448 | 0.6491 | 0.5049 | 0.5862 | 0.6265 | 0.8287 | 0.7403 | 0.5354 | 0.5574 |
0.1745 | 2.3783 | 2100 | 0.3082 | 0.6349 | 0.6609 | 0.6522 | 0.6621 | 0.5094 | 0.58 | 0.6105 | 0.8333 | 0.7634 | 0.5391 | 0.6087 |
0.1818 | 2.4915 | 2200 | 0.3242 | 0.6338 | 0.6564 | 0.6485 | 0.6723 | 0.5172 | 0.6 | 0.6222 | 0.8246 | 0.7049 | 0.5424 | 0.625 |
0.191 | 2.6048 | 2300 | 0.3134 | 0.6381 | 0.6636 | 0.6562 | 0.6757 | 0.496 | 0.5769 | 0.5870 | 0.84 | 0.7568 | 0.5833 | 0.6269 |
0.1783 | 2.7180 | 2400 | 0.3257 | 0.6341 | 0.6560 | 0.6531 | 0.6698 | 0.4870 | 0.5546 | 0.5979 | 0.8542 | 0.7448 | 0.5734 | 0.6269 |
0.1616 | 2.8313 | 2500 | 0.3133 | 0.6524 | 0.6745 | 0.6704 | 0.6790 | 0.576 | 0.5741 | 0.5895 | 0.8431 | 0.7833 | 0.5736 | 0.6269 |
0.1985 | 2.9445 | 2600 | 0.3376 | 0.6263 | 0.6591 | 0.6543 | 0.6696 | 0.5588 | 0.5333 | 0.5769 | 0.8687 | 0.7883 | 0.5581 | 0.5 |
0.1268 | 3.0578 | 2700 | 0.3292 | 0.6313 | 0.6593 | 0.6527 | 0.6627 | 0.6179 | 0.5333 | 0.5556 | 0.8442 | 0.7241 | 0.5641 | 0.5797 |
0.1352 | 3.1710 | 2800 | 0.3429 | 0.6415 | 0.6643 | 0.6593 | 0.6770 | 0.4912 | 0.5736 | 0.6154 | 0.8571 | 0.7742 | 0.544 | 0.6349 |
0.1189 | 3.2843 | 2900 | 0.3412 | 0.6418 | 0.6580 | 0.6586 | 0.6662 | 0.5528 | 0.5926 | 0.6263 | 0.8092 | 0.7591 | 0.5692 | 0.5833 |
0.1152 | 3.3975 | 3000 | 0.3558 | 0.6244 | 0.6533 | 0.6496 | 0.6644 | 0.5210 | 0.5455 | 0.6304 | 0.8601 | 0.7727 | 0.5333 | 0.5079 |
0.1328 | 3.5108 | 3100 | 0.3874 | 0.6021 | 0.6263 | 0.6239 | 0.6309 | 0.5197 | 0.4898 | 0.5739 | 0.7955 | 0.7714 | 0.5424 | 0.5217 |
0.13 | 3.6240 | 3200 | 0.3627 | 0.6334 | 0.6604 | 0.6546 | 0.6704 | 0.5574 | 0.5641 | 0.5909 | 0.8482 | 0.7770 | 0.5289 | 0.5672 |
0.1351 | 3.7373 | 3300 | 0.3701 | 0.6360 | 0.6612 | 0.6555 | 0.6765 | 0.5246 | 0.5846 | 0.6024 | 0.8410 | 0.7704 | 0.5455 | 0.5833 |
0.1216 | 3.8505 | 3400 | 0.3711 | 0.6606 | 0.6769 | 0.6765 | 0.6848 | 0.544 | 0.5970 | 0.6067 | 0.8308 | 0.8 | 0.5983 | 0.6471 |
0.1063 | 3.9638 | 3500 | 0.3516 | 0.6623 | 0.6850 | 0.6788 | 0.6943 | 0.5385 | 0.6355 | 0.6304 | 0.8571 | 0.7552 | 0.5802 | 0.6389 |
0.104 | 4.0770 | 3600 | 0.3574 | 0.6506 | 0.6706 | 0.6673 | 0.6843 | 0.5574 | 0.5688 | 0.6170 | 0.8478 | 0.7746 | 0.5484 | 0.64 |
0.1241 | 4.1903 | 3700 | 0.3719 | 0.6516 | 0.6738 | 0.6716 | 0.6749 | 0.5693 | 0.5893 | 0.6304 | 0.8377 | 0.8031 | 0.5641 | 0.5672 |
0.0755 | 4.3035 | 3800 | 0.3833 | 0.6443 | 0.6697 | 0.6649 | 0.6795 | 0.5357 | 0.5688 | 0.5882 | 0.8543 | 0.8060 | 0.5571 | 0.6 |
0.0805 | 4.4168 | 3900 | 0.3938 | 0.6426 | 0.6667 | 0.6614 | 0.6789 | 0.5736 | 0.5686 | 0.5941 | 0.8442 | 0.7812 | 0.5333 | 0.6027 |
0.0933 | 4.5300 | 4000 | 0.4044 | 0.6282 | 0.6533 | 0.6491 | 0.6585 | 0.5606 | 0.5739 | 0.5806 | 0.8235 | 0.7660 | 0.5470 | 0.5455 |
0.0786 | 4.6433 | 4100 | 0.3999 | 0.6470 | 0.6667 | 0.6627 | 0.6823 | 0.5669 | 0.6168 | 0.5977 | 0.8235 | 0.7518 | 0.5546 | 0.6173 |
0.0846 | 4.7565 | 4200 | 0.4176 | 0.6230 | 0.6488 | 0.6460 | 0.6602 | 0.5254 | 0.5766 | 0.5593 | 0.8432 | 0.7714 | 0.5424 | 0.5429 |
0.065 | 4.8698 | 4300 | 0.4035 | 0.6399 | 0.6659 | 0.6627 | 0.6747 | 0.5493 | 0.5766 | 0.6 | 0.8542 | 0.7692 | 0.576 | 0.5538 |
0.078 | 4.9830 | 4400 | 0.4071 | 0.6468 | 0.6721 | 0.6659 | 0.6827 | 0.5714 | 0.5405 | 0.66 | 0.8528 | 0.7714 | 0.5378 | 0.5938 |
0.0601 | 5.0963 | 4500 | 0.4055 | 0.6484 | 0.6712 | 0.6699 | 0.6824 | 0.5672 | 0.5806 | 0.6136 | 0.8482 | 0.7724 | 0.5899 | 0.5672 |
0.0392 | 5.2095 | 4600 | 0.4044 | 0.6538 | 0.6774 | 0.6731 | 0.6941 | 0.5714 | 0.5893 | 0.6374 | 0.8497 | 0.75 | 0.5873 | 0.5915 |
0.0673 | 5.3228 | 4700 | 0.4151 | 0.6532 | 0.6742 | 0.6739 | 0.6903 | 0.5985 | 0.5556 | 0.6383 | 0.8557 | 0.7794 | 0.5649 | 0.5797 |
0.0587 | 5.4360 | 4800 | 0.4144 | 0.6539 | 0.6784 | 0.6719 | 0.6887 | 0.576 | 0.6111 | 0.6383 | 0.8406 | 0.7778 | 0.5470 | 0.5867 |
0.067 | 5.5493 | 4900 | 0.4242 | 0.6535 | 0.6756 | 0.6744 | 0.6868 | 0.5839 | 0.5965 | 0.6067 | 0.8485 | 0.7704 | 0.5931 | 0.5753 |
0.0662 | 5.6625 | 5000 | 0.4227 | 0.6560 | 0.6772 | 0.6748 | 0.6888 | 0.5772 | 0.5794 | 0.6364 | 0.8342 | 0.7857 | 0.5909 | 0.5882 |
0.0442 | 5.7758 | 5100 | 0.4474 | 0.6388 | 0.6609 | 0.6606 | 0.6748 | 0.56 | 0.5690 | 0.6263 | 0.8557 | 0.7417 | 0.5616 | 0.5574 |
0.0569 | 5.8890 | 5200 | 0.4315 | 0.6534 | 0.6744 | 0.6732 | 0.6807 | 0.5816 | 0.5882 | 0.6383 | 0.8306 | 0.7746 | 0.5968 | 0.5634 |
0.0757 | 6.0023 | 5300 | 0.4323 | 0.6428 | 0.6667 | 0.6621 | 0.6792 | 0.5378 | 0.5273 | 0.6226 | 0.8469 | 0.7660 | 0.5854 | 0.6133 |
0.0362 | 6.1155 | 5400 | 0.4365 | 0.6518 | 0.6719 | 0.6698 | 0.6870 | 0.5616 | 0.5636 | 0.6222 | 0.8454 | 0.7651 | 0.5827 | 0.6216 |
0.039 | 6.2288 | 5500 | 0.4396 | 0.6491 | 0.6682 | 0.6675 | 0.6825 | 0.5426 | 0.5538 | 0.6222 | 0.8557 | 0.7714 | 0.5692 | 0.6286 |
0.0358 | 6.3420 | 5600 | 0.4413 | 0.6493 | 0.6760 | 0.6684 | 0.6941 | 0.5692 | 0.5825 | 0.6170 | 0.8529 | 0.7518 | 0.5690 | 0.6027 |
0.0298 | 6.4553 | 5700 | 0.4362 | 0.6528 | 0.6759 | 0.6715 | 0.6911 | 0.5625 | 0.5766 | 0.6122 | 0.8557 | 0.7746 | 0.5667 | 0.6216 |
0.0522 | 6.5685 | 5800 | 0.4574 | 0.6431 | 0.6608 | 0.6628 | 0.6829 | 0.5612 | 0.5469 | 0.6327 | 0.8511 | 0.7483 | 0.5672 | 0.5946 |
0.0296 | 6.6818 | 5900 | 0.4575 | 0.6469 | 0.6629 | 0.6653 | 0.6804 | 0.5828 | 0.5538 | 0.6292 | 0.8404 | 0.7482 | 0.5714 | 0.6027 |
0.0423 | 6.7950 | 6000 | 0.4353 | 0.6526 | 0.6772 | 0.6752 | 0.6937 | 0.5778 | 0.5905 | 0.6186 | 0.8646 | 0.7483 | 0.6047 | 0.5641 |
0.044 | 6.9083 | 6100 | 0.4377 | 0.6605 | 0.6850 | 0.6804 | 0.6977 | 0.6047 | 0.6126 | 0.6186 | 0.85 | 0.7941 | 0.5645 | 0.5789 |
0.0277 | 7.0215 | 6200 | 0.4616 | 0.6585 | 0.6770 | 0.6770 | 0.6915 | 0.5915 | 0.5691 | 0.62 | 0.8351 | 0.7639 | 0.6212 | 0.6087 |
0.0215 | 7.1348 | 6300 | 0.4609 | 0.6595 | 0.6800 | 0.6789 | 0.6954 | 0.5942 | 0.576 | 0.6263 | 0.8543 | 0.7465 | 0.6107 | 0.6087 |
0.0295 | 7.2480 | 6400 | 0.4522 | 0.6573 | 0.6779 | 0.6763 | 0.6917 | 0.5985 | 0.5565 | 0.6327 | 0.8586 | 0.7338 | 0.6015 | 0.6197 |
0.0213 | 7.3613 | 6500 | 0.4629 | 0.6620 | 0.6794 | 0.6801 | 0.6889 | 0.5833 | 0.5932 | 0.6458 | 0.8351 | 0.7556 | 0.6212 | 0.6 |
0.0182 | 7.4745 | 6600 | 0.4632 | 0.6616 | 0.6839 | 0.6802 | 0.6951 | 0.6029 | 0.5741 | 0.6458 | 0.8571 | 0.76 | 0.5802 | 0.6111 |
0.0273 | 7.5878 | 6700 | 0.4781 | 0.6586 | 0.6785 | 0.6769 | 0.6930 | 0.5816 | 0.5593 | 0.6667 | 0.85 | 0.7517 | 0.5926 | 0.6087 |
0.0256 | 7.7010 | 6800 | 0.4761 | 0.6442 | 0.6614 | 0.6603 | 0.6754 | 0.5758 | 0.5556 | 0.6526 | 0.8205 | 0.7445 | 0.5574 | 0.6027 |
0.0196 | 7.8143 | 6900 | 0.4727 | 0.6502 | 0.6689 | 0.6680 | 0.6801 | 0.5758 | 0.5667 | 0.6019 | 0.8247 | 0.7794 | 0.592 | 0.6111 |
0.0307 | 7.9275 | 7000 | 0.4798 | 0.6555 | 0.6755 | 0.6761 | 0.6945 | 0.5778 | 0.5736 | 0.6078 | 0.8542 | 0.7586 | 0.6165 | 0.6 |
0.0184 | 8.0408 | 7100 | 0.4746 | 0.6592 | 0.6794 | 0.6783 | 0.6889 | 0.5839 | 0.5690 | 0.6458 | 0.8526 | 0.7755 | 0.5846 | 0.6027 |
0.0199 | 8.1540 | 7200 | 0.4755 | 0.6575 | 0.6773 | 0.6759 | 0.6826 | 0.5899 | 0.5660 | 0.6392 | 0.8495 | 0.7619 | 0.5846 | 0.6111 |
0.0265 | 8.2673 | 7300 | 0.4770 | 0.6575 | 0.6740 | 0.6765 | 0.6902 | 0.5674 | 0.5692 | 0.6526 | 0.8482 | 0.7606 | 0.6043 | 0.6 |
0.0141 | 8.3805 | 7400 | 0.4840 | 0.6562 | 0.6749 | 0.6737 | 0.6859 | 0.5755 | 0.5739 | 0.6392 | 0.8513 | 0.7448 | 0.5821 | 0.6269 |
0.0225 | 8.4938 | 7500 | 0.4882 | 0.6564 | 0.6742 | 0.6741 | 0.6855 | 0.5755 | 0.5766 | 0.6327 | 0.8438 | 0.7482 | 0.5985 | 0.6197 |
0.0089 | 8.6070 | 7600 | 0.4980 | 0.6532 | 0.6682 | 0.6700 | 0.6824 | 0.5429 | 0.5669 | 0.6596 | 0.8360 | 0.7534 | 0.5938 | 0.6197 |
0.0167 | 8.7203 | 7700 | 0.4826 | 0.6484 | 0.6674 | 0.6665 | 0.6837 | 0.5496 | 0.55 | 0.6392 | 0.8497 | 0.7483 | 0.5802 | 0.6216 |
0.0151 | 8.8335 | 7800 | 0.4899 | 0.6466 | 0.6659 | 0.6645 | 0.6816 | 0.5652 | 0.56 | 0.6392 | 0.8342 | 0.7586 | 0.5692 | 0.6 |
0.013 | 8.9468 | 7900 | 0.4837 | 0.6533 | 0.6726 | 0.6725 | 0.6886 | 0.5652 | 0.576 | 0.6458 | 0.8469 | 0.7536 | 0.5938 | 0.5915 |
0.011 | 9.0600 | 8000 | 0.4852 | 0.6577 | 0.6772 | 0.6755 | 0.6907 | 0.5612 | 0.5932 | 0.6526 | 0.8513 | 0.7586 | 0.576 | 0.6111 |
0.0131 | 9.1733 | 8100 | 0.4884 | 0.6549 | 0.6741 | 0.6728 | 0.6905 | 0.5571 | 0.576 | 0.6458 | 0.8528 | 0.7586 | 0.576 | 0.6176 |
0.0137 | 9.2865 | 8200 | 0.4864 | 0.6617 | 0.6808 | 0.6800 | 0.6978 | 0.5652 | 0.5854 | 0.6458 | 0.8571 | 0.7692 | 0.5891 | 0.6197 |
0.0148 | 9.3998 | 8300 | 0.4870 | 0.6568 | 0.6779 | 0.6765 | 0.6914 | 0.5652 | 0.5833 | 0.6526 | 0.8571 | 0.7586 | 0.5891 | 0.5915 |
0.0089 | 9.5130 | 8400 | 0.4862 | 0.6546 | 0.6741 | 0.6735 | 0.6885 | 0.5588 | 0.5620 | 0.6458 | 0.8557 | 0.7639 | 0.5846 | 0.6111 |
0.0112 | 9.6263 | 8500 | 0.4877 | 0.6547 | 0.6742 | 0.6733 | 0.6876 | 0.5588 | 0.5546 | 0.6458 | 0.8557 | 0.7639 | 0.5846 | 0.6197 |
0.0113 | 9.7395 | 8600 | 0.4863 | 0.6557 | 0.6757 | 0.6742 | 0.6878 | 0.5672 | 0.5641 | 0.6392 | 0.8557 | 0.7639 | 0.5802 | 0.6197 |
0.0086 | 9.8528 | 8700 | 0.4866 | 0.6558 | 0.6756 | 0.6747 | 0.6903 | 0.5630 | 0.5667 | 0.6458 | 0.8557 | 0.7639 | 0.5846 | 0.6111 |
0.0073 | 9.9660 | 8800 | 0.4862 | 0.6552 | 0.6756 | 0.6746 | 0.6908 | 0.5672 | 0.5667 | 0.6458 | 0.8557 | 0.7639 | 0.5846 | 0.6027 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.