RoBERTa-Base-SE2025T11A-sun-v20250111123127
This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2025
- F1 Macro: 0.7854
- F1 Micro: 0.7849
- F1 Weighted: 0.7826
- F1 Samples: 0.7979
- F1 Label Marah: 0.76
- F1 Label Jijik: 0.7077
- F1 Label Takut: 0.8271
- F1 Label Senang: 0.8489
- F1 Label Sedih: 0.8125
- F1 Label Terkejut: 0.7463
- F1 Label Biasa: 0.7955
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | F1 Samples | F1 Label Marah | F1 Label Jijik | F1 Label Takut | F1 Label Senang | F1 Label Sedih | F1 Label Terkejut | F1 Label Biasa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4598 | 0.0615 | 100 | 0.4207 | 0.1498 | 0.1682 | 0.1502 | 0.1043 | 0.0 | 0.0 | 0.3333 | 0.3415 | 0.3736 | 0.0 | 0.0 |
0.4187 | 0.1229 | 200 | 0.3878 | 0.2292 | 0.3043 | 0.2263 | 0.2065 | 0.0 | 0.0 | 0.6154 | 0.7273 | 0.2619 | 0.0 | 0.0 |
0.3714 | 0.1844 | 300 | 0.3536 | 0.3304 | 0.4103 | 0.3360 | 0.3062 | 0.2340 | 0.0260 | 0.6349 | 0.7424 | 0.5741 | 0.1013 | 0.0 |
0.3921 | 0.2459 | 400 | 0.3424 | 0.3967 | 0.4617 | 0.4097 | 0.3830 | 0.2963 | 0.0741 | 0.6076 | 0.6667 | 0.6271 | 0.5049 | 0.0 |
0.3477 | 0.3073 | 500 | 0.3091 | 0.4466 | 0.5140 | 0.4500 | 0.4220 | 0.1163 | 0.1190 | 0.6429 | 0.7857 | 0.6667 | 0.6387 | 0.1569 |
0.3327 | 0.3688 | 600 | 0.2963 | 0.5397 | 0.5707 | 0.5325 | 0.4967 | 0.1379 | 0.3363 | 0.6607 | 0.8143 | 0.704 | 0.6610 | 0.4638 |
0.2976 | 0.4302 | 700 | 0.2937 | 0.5589 | 0.5972 | 0.5634 | 0.5337 | 0.5658 | 0.1839 | 0.6355 | 0.8054 | 0.6829 | 0.6723 | 0.3667 |
0.3519 | 0.4917 | 800 | 0.2988 | 0.5831 | 0.6233 | 0.5931 | 0.5851 | 0.6392 | 0.26 | 0.6095 | 0.8 | 0.7656 | 0.6861 | 0.3214 |
0.3027 | 0.5532 | 900 | 0.2769 | 0.6593 | 0.6607 | 0.6576 | 0.6478 | 0.5414 | 0.5290 | 0.6838 | 0.8143 | 0.7752 | 0.6713 | 0.6 |
0.3005 | 0.6146 | 1000 | 0.2860 | 0.6349 | 0.6359 | 0.6315 | 0.6232 | 0.5989 | 0.5124 | 0.6833 | 0.7770 | 0.6306 | 0.6126 | 0.6292 |
0.286 | 0.6761 | 1100 | 0.2782 | 0.6616 | 0.6651 | 0.6543 | 0.6466 | 0.512 | 0.5397 | 0.6606 | 0.8138 | 0.7907 | 0.6154 | 0.6990 |
0.2906 | 0.7376 | 1200 | 0.2692 | 0.6758 | 0.6721 | 0.6701 | 0.6544 | 0.6027 | 0.5397 | 0.7273 | 0.736 | 0.7402 | 0.6612 | 0.7234 |
0.2635 | 0.7990 | 1300 | 0.2740 | 0.6747 | 0.6765 | 0.6706 | 0.6649 | 0.6225 | 0.4696 | 0.7 | 0.7273 | 0.7910 | 0.7134 | 0.6988 |
0.2707 | 0.8605 | 1400 | 0.2666 | 0.6842 | 0.6842 | 0.6798 | 0.6835 | 0.6164 | 0.5496 | 0.7193 | 0.8163 | 0.6957 | 0.6977 | 0.6947 |
0.2577 | 0.9219 | 1500 | 0.2654 | 0.6803 | 0.6791 | 0.6753 | 0.6712 | 0.6176 | 0.5909 | 0.7304 | 0.8116 | 0.6545 | 0.6525 | 0.7045 |
0.2706 | 0.9834 | 1600 | 0.2431 | 0.7172 | 0.7195 | 0.7123 | 0.7241 | 0.7013 | 0.5391 | 0.7480 | 0.8227 | 0.7481 | 0.7087 | 0.7527 |
0.1988 | 1.0449 | 1700 | 0.2480 | 0.7168 | 0.7159 | 0.7133 | 0.7229 | 0.6853 | 0.5846 | 0.7368 | 0.7971 | 0.7419 | 0.7353 | 0.7368 |
0.1967 | 1.1063 | 1800 | 0.2546 | 0.7258 | 0.7233 | 0.7225 | 0.7278 | 0.6994 | 0.6377 | 0.7257 | 0.7794 | 0.7377 | 0.7429 | 0.7579 |
0.1776 | 1.1678 | 1900 | 0.2506 | 0.7204 | 0.7159 | 0.7137 | 0.7278 | 0.6324 | 0.6410 | 0.7009 | 0.8112 | 0.7377 | 0.7287 | 0.7912 |
0.2134 | 1.2293 | 2000 | 0.2525 | 0.7270 | 0.7254 | 0.7208 | 0.7278 | 0.6892 | 0.6364 | 0.7059 | 0.8212 | 0.7119 | 0.7244 | 0.8 |
0.1548 | 1.2907 | 2100 | 0.2526 | 0.7236 | 0.7240 | 0.7191 | 0.7315 | 0.6944 | 0.5873 | 0.7288 | 0.8252 | 0.7480 | 0.7244 | 0.7573 |
0.2253 | 1.3522 | 2200 | 0.2434 | 0.7398 | 0.7381 | 0.7344 | 0.7498 | 0.7007 | 0.6986 | 0.7154 | 0.8082 | 0.7119 | 0.7353 | 0.8081 |
0.173 | 1.4136 | 2300 | 0.2415 | 0.7482 | 0.7447 | 0.7427 | 0.7578 | 0.7083 | 0.6528 | 0.7130 | 0.8201 | 0.7581 | 0.7681 | 0.8172 |
0.1966 | 1.4751 | 2400 | 0.2363 | 0.7519 | 0.7497 | 0.7480 | 0.7644 | 0.7067 | 0.6906 | 0.7288 | 0.8175 | 0.7692 | 0.7586 | 0.7917 |
0.1677 | 1.5366 | 2500 | 0.2360 | 0.7363 | 0.7337 | 0.7316 | 0.7439 | 0.7037 | 0.6190 | 0.752 | 0.7786 | 0.7402 | 0.7692 | 0.7912 |
0.2415 | 1.5980 | 2600 | 0.2320 | 0.7436 | 0.7424 | 0.7389 | 0.7483 | 0.7133 | 0.6142 | 0.7419 | 0.8116 | 0.7581 | 0.7746 | 0.7912 |
0.1749 | 1.6595 | 2700 | 0.2327 | 0.7410 | 0.7381 | 0.7371 | 0.7544 | 0.7123 | 0.6753 | 0.7395 | 0.8028 | 0.7167 | 0.7576 | 0.7826 |
0.1499 | 1.7210 | 2800 | 0.2296 | 0.7573 | 0.7541 | 0.7544 | 0.7650 | 0.7037 | 0.7050 | 0.7563 | 0.8030 | 0.7597 | 0.7910 | 0.7826 |
0.1535 | 1.7824 | 2900 | 0.2274 | 0.7599 | 0.7589 | 0.7577 | 0.7696 | 0.7248 | 0.7194 | 0.7458 | 0.8296 | 0.7752 | 0.7538 | 0.7708 |
0.1818 | 1.8439 | 3000 | 0.2263 | 0.7524 | 0.7511 | 0.7487 | 0.7626 | 0.7020 | 0.6769 | 0.7438 | 0.8227 | 0.7619 | 0.7761 | 0.7835 |
0.179 | 1.9053 | 3100 | 0.2274 | 0.7596 | 0.7583 | 0.7569 | 0.7717 | 0.7152 | 0.7206 | 0.7563 | 0.8056 | 0.7480 | 0.7879 | 0.7835 |
0.1883 | 1.9668 | 3200 | 0.2253 | 0.7560 | 0.7544 | 0.7530 | 0.7684 | 0.7105 | 0.7111 | 0.7438 | 0.8056 | 0.768 | 0.7692 | 0.7835 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.