RoBERTa-Base-SE2025T11A-sun-v20250112113749

This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2925
  • F1 Macro: 0.5991
  • F1 Micro: 0.6404
  • F1 Weighted: 0.6274
  • F1 Samples: 0.6192
  • F1 Label Marah: 0.5763
  • F1 Label Jijik: 0.5618
  • F1 Label Takut: 0.5682
  • F1 Label Senang: 0.8182
  • F1 Label Sedih: 0.7302
  • F1 Label Terkejut: 0.5321
  • F1 Label Biasa: 0.4068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted F1 Samples F1 Label Marah F1 Label Jijik F1 Label Takut F1 Label Senang F1 Label Sedih F1 Label Terkejut F1 Label Biasa
0.4974 0.1134 100 0.4155 0.1161 0.1818 0.1503 0.1091 0.0 0.0 0.2295 0.5255 0.0580 0.0 0.0
0.4003 0.2268 200 0.3785 0.2470 0.4107 0.3002 0.3032 0.0312 0.0 0.5067 0.8341 0.3571 0.0 0.0
0.4055 0.3401 300 0.3682 0.2982 0.4550 0.3501 0.3495 0.1449 0.0 0.5263 0.7981 0.6182 0.0 0.0
0.3852 0.4535 400 0.3425 0.3558 0.4941 0.4097 0.4064 0.3864 0.0 0.5195 0.7960 0.6331 0.1558 0.0
0.3779 0.5669 500 0.3220 0.4095 0.5359 0.4690 0.4580 0.5 0.0 0.5067 0.8116 0.6182 0.4301 0.0
0.34 0.6803 600 0.3320 0.4550 0.5571 0.5065 0.4965 0.3377 0.4870 0.5128 0.8091 0.6034 0.4348 0.0
0.3842 0.7937 700 0.3080 0.4576 0.5686 0.5091 0.4973 0.5893 0.0690 0.575 0.8190 0.6038 0.4468 0.1
0.3649 0.9070 800 0.3058 0.4637 0.5746 0.5197 0.5174 0.5763 0.1311 0.5854 0.8019 0.6607 0.4906 0.0
0.3466 1.0204 900 0.2996 0.5139 0.5910 0.5594 0.5306 0.5714 0.3056 0.575 0.7979 0.6555 0.5455 0.1463
0.3043 1.1338 1000 0.2929 0.5707 0.624 0.5955 0.5831 0.6126 0.2687 0.5882 0.8134 0.6724 0.5149 0.5246
0.2397 1.2472 1100 0.2941 0.5674 0.6113 0.5901 0.5721 0.5686 0.2647 0.5957 0.7958 0.6897 0.5143 0.5429
0.2649 1.3605 1200 0.2992 0.5917 0.6270 0.6193 0.5990 0.5714 0.5345 0.5714 0.8021 0.7188 0.5366 0.4074
0.2524 1.4739 1300 0.2948 0.5985 0.6278 0.6203 0.6009 0.5546 0.5743 0.5977 0.7742 0.7132 0.5273 0.4483
0.2509 1.5873 1400 0.2968 0.5756 0.625 0.6089 0.5968 0.5649 0.4390 0.5882 0.8205 0.752 0.5138 0.3509
0.268 1.7007 1500 0.2992 0.5830 0.6264 0.6120 0.6037 0.5410 0.5 0.5895 0.8182 0.7227 0.5098 0.4
0.2532 1.8141 1600 0.2962 0.6076 0.6439 0.6313 0.6274 0.5664 0.5714 0.6154 0.8177 0.7097 0.5138 0.4590
0.2737 1.9274 1700 0.2925 0.5991 0.6404 0.6274 0.6192 0.5763 0.5618 0.5682 0.8182 0.7302 0.5321 0.4068

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alxxtexxr/RoBERTa-Base-SE2025T11A-sun-v20250112113749

Finetuned
(25)
this model