nickfraser
commited on
Commit
·
4024f9d
1
Parent(s):
dca9b6e
Updated math model to target int8 x int8 kernels.
Browse files- math_model.py +8 -6
- test_quant_conv2d.py +13 -8
- test_quant_linear.py +11 -7
math_model.py
CHANGED
@@ -47,11 +47,12 @@ class QuantLinear(nn.Module):
|
|
47 |
# - multiply this sum with every weight zero-point (e.g., `torch.sum(quant_input, dim=-1) * self.weight_zp`
|
48 |
# - Subtract from previous output (e.g., `quant_output -= torch.sum(quant_input, dim=-1) * self.weight_zp`)
|
49 |
# - All other code is just to make sure the broadcasting semantics work correctly
|
50 |
-
|
|
|
51 |
fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
|
52 |
quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
53 |
quant_output = torch.nn.functional.linear(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.linear quantizing the output to int8
|
54 |
-
correction = torch.sum(quant_input, dim=-1, keepdim=True).to(torch.int32) * (-
|
55 |
quant_output = quant_output + correction
|
56 |
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1]*(quant_output.ndim-1) + [(self.weight_scale * self.input_scale).nelement()]), 0.0)
|
57 |
output += self.linear.bias
|
@@ -103,15 +104,16 @@ class QuantConv2d(nn.Module):
|
|
103 |
# - multiply this sum with every weight zero-point (e.g., `sum * self.weight_zp`
|
104 |
# - Subtract from previous output (e.g., `quant_output -= sum * self.weight_zp`)
|
105 |
# - All other code is just to make sure the broadcasting semantics work correctly
|
106 |
-
|
|
|
107 |
b_shape = list(quant_weight.shape) # Used for weight zero-point correction
|
108 |
b_shape[0] = 1 # Used for weight zero-point correction
|
109 |
-
weight_cat = torch.ones((1,1,1,1)).broadcast_to(b_shape).to(torch.
|
110 |
-
quant_weight = torch.cat((quant_weight,weight_cat),dim=0).to(torch.
|
111 |
fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
|
112 |
quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
113 |
quant_output = torch.nn.functional.conv2d(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.conv2d quantizing the output to int8
|
114 |
-
correction = quant_output[:,-1,:,:] * (-
|
115 |
quant_output = quant_output[:,:-1,:,:] + correction
|
116 |
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1, (self.weight_scale * self.input_scale).nelement()] + [1]*(quant_output.ndim-2)), 0.0)
|
117 |
output += self.conv2d.bias.view([1, self.conv2d.bias.nelement()] + [1]*(quant_output.ndim-2))
|
|
|
47 |
# - multiply this sum with every weight zero-point (e.g., `torch.sum(quant_input, dim=-1) * self.weight_zp`
|
48 |
# - Subtract from previous output (e.g., `quant_output -= torch.sum(quant_input, dim=-1) * self.weight_zp`)
|
49 |
# - All other code is just to make sure the broadcasting semantics work correctly
|
50 |
+
weight_zp_int8 = (self.weight_zp - 128).to(torch.int8).to(torch.float32)
|
51 |
+
quant_weight = quantize(self.linear.weight, self.weight_scale, weight_zp_int8, is_asym=False).to(torch.int8)
|
52 |
fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
|
53 |
quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
54 |
quant_output = torch.nn.functional.linear(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.linear quantizing the output to int8
|
55 |
+
correction = torch.sum(quant_input, dim=-1, keepdim=True).to(torch.int32) * (-weight_zp_int8).to(torch.int8).view([1]*(quant_input.ndim-1) + [self.weight_zp.nelement()]) # Correct for weight zero-point
|
56 |
quant_output = quant_output + correction
|
57 |
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1]*(quant_output.ndim-1) + [(self.weight_scale * self.input_scale).nelement()]), 0.0)
|
58 |
output += self.linear.bias
|
|
|
104 |
# - multiply this sum with every weight zero-point (e.g., `sum * self.weight_zp`
|
105 |
# - Subtract from previous output (e.g., `quant_output -= sum * self.weight_zp`)
|
106 |
# - All other code is just to make sure the broadcasting semantics work correctly
|
107 |
+
weight_zp_int8 = (self.weight_zp - 128).to(torch.int8).to(torch.float32)
|
108 |
+
quant_weight = quantize(self.conv2d.weight, self.weight_scale, weight_zp_int8, is_asym=False).to(torch.int8)
|
109 |
b_shape = list(quant_weight.shape) # Used for weight zero-point correction
|
110 |
b_shape[0] = 1 # Used for weight zero-point correction
|
111 |
+
weight_cat = torch.ones((1,1,1,1)).broadcast_to(b_shape).to(torch.int8) # Used for weight zero-point correction
|
112 |
+
quant_weight = torch.cat((quant_weight,weight_cat),dim=0).to(torch.int8) # Create extra output channel, used for weight zero-point correction
|
113 |
fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
|
114 |
quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
115 |
quant_output = torch.nn.functional.conv2d(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.conv2d quantizing the output to int8
|
116 |
+
correction = quant_output[:,-1,:,:] * (-weight_zp_int8).to(torch.int8).view([1, self.weight_zp.nelement()] + [1]*(quant_output.ndim-2)) # Correct zero-point for weight
|
117 |
quant_output = quant_output[:,:-1,:,:] + correction
|
118 |
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1, (self.weight_scale * self.input_scale).nelement()] + [1]*(quant_output.ndim-2)), 0.0)
|
119 |
output += self.conv2d.bias.view([1, self.conv2d.bias.nelement()] + [1]*(quant_output.ndim-2))
|
test_quant_conv2d.py
CHANGED
@@ -1,23 +1,28 @@
|
|
1 |
import torch
|
|
|
2 |
from math_model import QuantConv2d
|
3 |
|
4 |
torch.manual_seed(0)
|
5 |
|
6 |
batch_size = 1
|
7 |
-
out_ch =
|
8 |
-
in_ch =
|
9 |
k = 3
|
10 |
h = 5
|
11 |
w = 5
|
12 |
|
|
|
|
|
|
|
13 |
quant_params = {
|
14 |
'smoothquant_mul': torch.rand((in_ch,)),
|
15 |
'smoothquant_mul_shape': (1,in_ch,1,1),
|
16 |
'weight_scale': torch.rand((out_ch,)),
|
|
|
17 |
'weight_scale_shape': (out_ch,1,1,1),
|
18 |
-
'weight_zp': torch.
|
19 |
'weight_zp_shape': (out_ch,1,1,1),
|
20 |
-
'input_scale': torch.
|
21 |
'input_scale_shape': tuple(),
|
22 |
'input_zp': torch.zeros((1,)),
|
23 |
'input_zp_shape': tuple(),
|
@@ -25,10 +30,10 @@ quant_params = {
|
|
25 |
|
26 |
print(quant_params)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
o_qdq =
|
31 |
-
o_qop =
|
32 |
print(o_qdq.shape)
|
33 |
print(o_qop.shape)
|
34 |
print(o_qdq - o_qop)
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
from math_model import QuantConv2d
|
4 |
|
5 |
torch.manual_seed(0)
|
6 |
|
7 |
batch_size = 1
|
8 |
+
out_ch = 128
|
9 |
+
in_ch = 64
|
10 |
k = 3
|
11 |
h = 5
|
12 |
w = 5
|
13 |
|
14 |
+
i = 2*torch.rand((batch_size,in_ch,h,w)) - 1.
|
15 |
+
l = nn.Conv2d(in_ch, out_ch, k, bias=True)
|
16 |
+
|
17 |
quant_params = {
|
18 |
'smoothquant_mul': torch.rand((in_ch,)),
|
19 |
'smoothquant_mul_shape': (1,in_ch,1,1),
|
20 |
'weight_scale': torch.rand((out_ch,)),
|
21 |
+
'weight_scale': torch.max(torch.abs(torch.flatten(l.weight, start_dim=1)), dim=1).values / 128.,
|
22 |
'weight_scale_shape': (out_ch,1,1,1),
|
23 |
+
'weight_zp': torch.clamp(torch.round((torch.mean((l.weight), dim=(1,2,3))) * (128 / torch.max(torch.abs(torch.flatten(l.weight, start_dim=1)), dim=1).values)) + 128, 0, 255),
|
24 |
'weight_zp_shape': (out_ch,1,1,1),
|
25 |
+
'input_scale': torch.max(torch.abs(i)) / 128.,
|
26 |
'input_scale_shape': tuple(),
|
27 |
'input_zp': torch.zeros((1,)),
|
28 |
'input_zp_shape': tuple(),
|
|
|
30 |
|
31 |
print(quant_params)
|
32 |
|
33 |
+
ql = QuantConv2d(in_ch, out_ch, k, quant_params)
|
34 |
+
ql.conv2d.load_state_dict(l.state_dict())
|
35 |
+
o_qdq = ql(i)
|
36 |
+
o_qop = ql(i, qop=True)
|
37 |
print(o_qdq.shape)
|
38 |
print(o_qop.shape)
|
39 |
print(o_qdq - o_qop)
|
test_quant_linear.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import torch
|
|
|
2 |
from math_model import QuantLinear
|
3 |
|
4 |
torch.manual_seed(0)
|
@@ -7,14 +8,17 @@ batch_size = 1
|
|
7 |
out_ch = 128
|
8 |
in_ch = 64
|
9 |
|
|
|
|
|
|
|
10 |
quant_params = {
|
11 |
'smoothquant_mul': torch.rand((in_ch,)),
|
12 |
'smoothquant_mul_shape': (1,in_ch),
|
13 |
-
'weight_scale': torch.
|
14 |
'weight_scale_shape': (out_ch,1),
|
15 |
-
'weight_zp': torch.
|
16 |
'weight_zp_shape': (out_ch,1),
|
17 |
-
'input_scale': torch.
|
18 |
'input_scale_shape': tuple(),
|
19 |
'input_zp': torch.zeros((1,)),
|
20 |
'input_zp_shape': tuple(),
|
@@ -22,10 +26,10 @@ quant_params = {
|
|
22 |
|
23 |
print(quant_params)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
o_qdq =
|
28 |
-
o_qop =
|
29 |
print(o_qdq.shape)
|
30 |
print(o_qop.shape)
|
31 |
print(o_qdq - o_qop)
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
from math_model import QuantLinear
|
4 |
|
5 |
torch.manual_seed(0)
|
|
|
8 |
out_ch = 128
|
9 |
in_ch = 64
|
10 |
|
11 |
+
i = 2*torch.rand((batch_size,in_ch)) - 1.
|
12 |
+
l = nn.Linear(in_ch, out_ch, bias=True)
|
13 |
+
|
14 |
quant_params = {
|
15 |
'smoothquant_mul': torch.rand((in_ch,)),
|
16 |
'smoothquant_mul_shape': (1,in_ch),
|
17 |
+
'weight_scale': torch.max(torch.abs(l.weight), dim=1).values / 128.,
|
18 |
'weight_scale_shape': (out_ch,1),
|
19 |
+
'weight_zp': torch.clamp(torch.round((torch.mean((l.weight), dim=1)) * (128 / torch.max(torch.abs(l.weight), dim=1).values)) + 128, 0, 255),
|
20 |
'weight_zp_shape': (out_ch,1),
|
21 |
+
'input_scale': torch.max(torch.abs(i)) / 128.,
|
22 |
'input_scale_shape': tuple(),
|
23 |
'input_zp': torch.zeros((1,)),
|
24 |
'input_zp_shape': tuple(),
|
|
|
26 |
|
27 |
print(quant_params)
|
28 |
|
29 |
+
ql = QuantLinear(in_ch, out_ch, quant_params)
|
30 |
+
ql.linear.load_state_dict(l.state_dict())
|
31 |
+
o_qdq = ql(i)
|
32 |
+
o_qop = ql(i, qop=True)
|
33 |
print(o_qdq.shape)
|
34 |
print(o_qop.shape)
|
35 |
print(o_qdq - o_qop)
|