|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import random |
|
import warnings |
|
from collections import defaultdict |
|
from contextlib import contextmanager, nullcontext |
|
from copy import deepcopy |
|
from functools import wraps |
|
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from accelerate import PartialState |
|
from accelerate.utils import is_deepspeed_available, tqdm |
|
from datasets import Dataset |
|
from torch.utils.data import DataLoader |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
DataCollator, |
|
PreTrainedModel, |
|
PreTrainedTokenizerBase, |
|
Trainer, |
|
TrainingArguments, |
|
) |
|
from transformers.trainer_callback import TrainerCallback |
|
from transformers.trainer_utils import EvalLoopOutput |
|
|
|
from ..import_utils import is_peft_available, is_wandb_available |
|
from ..models import PreTrainedModelWrapper, create_reference_model |
|
from .utils import ( |
|
DPODataCollatorWithPadding, |
|
disable_dropout_in_model, |
|
pad_to_length, |
|
peft_module_casting_to_bf16, |
|
trl_sanitze_kwargs_for_tagging, |
|
) |
|
|
|
|
|
if is_peft_available(): |
|
from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
if is_deepspeed_available(): |
|
import deepspeed |
|
|
|
|
|
class DPOTrainer(Trainer): |
|
r""" |
|
Initialize DPOTrainer. |
|
|
|
Args: |
|
model (`transformers.PreTrainedModel`): |
|
The model to train, preferably an `AutoModelForSequenceClassification`. |
|
ref_model (`PreTrainedModelWrapper`): |
|
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no |
|
reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized. |
|
beta (`float`, defaults to 0.1): |
|
The beta factor in DPO loss. Higher beta means less divergence from the initial policy. For the IPO loss, beta is the regularization parameter denoted by tau in the paper. |
|
label_smoothing (`float`, defaults to 0): |
|
The robust DPO label smoothing parameter from the [cDPO](https://ericmitchell.ai/cdpo.pdf) report that should be between 0 and 0.5. |
|
loss_type (`str`, defaults to `"sigmoid"`): |
|
The type of DPO loss to use. Either `"sigmoid"` the default DPO loss,`"hinge"` loss from [SLiC](https://arxiv.org/abs/2305.10425) paper, `"ipo"` from [IPO](https://arxiv.org/abs/2310.12036) paper, or `"kto"` from the HALOs [report](https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf). |
|
args (`transformers.TrainingArguments`): |
|
The arguments to use for training. |
|
data_collator (`transformers.DataCollator`): |
|
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used |
|
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. |
|
label_pad_token_id (`int`, defaults to `-100`): |
|
The label pad token id. This argument is required if you want to use the default data collator. |
|
padding_value (`int`, defaults to `0`): |
|
The padding value if it is different to the tokenizer's pad_token_id. |
|
truncation_mode (`str`, defaults to `keep_end`): |
|
The truncation mode to use, either `keep_end` or `keep_start`. This argument is required if you want to use the default data collator. |
|
train_dataset (`datasets.Dataset`): |
|
The dataset to use for training. |
|
eval_dataset (`datasets.Dataset`): |
|
The dataset to use for evaluation. |
|
tokenizer (`transformers.PreTrainedTokenizerBase`): |
|
The tokenizer to use for training. This argument is required if you want to use the default data collator. |
|
model_init (`Callable[[], transformers.PreTrainedModel]`): |
|
The model initializer to use for training. If None is specified, the default model initializer will be used. |
|
callbacks (`List[transformers.TrainerCallback]`): |
|
The callbacks to use for training. |
|
optimizers (`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): |
|
The optimizer and scheduler to use for training. |
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): |
|
The function to use to preprocess the logits before computing the metrics. |
|
max_length (`int`, defaults to `None`): |
|
The maximum length of the sequences in the batch. This argument is required if you want to use the default data collator. |
|
max_prompt_length (`int`, defaults to `None`): |
|
The maximum length of the prompt. This argument is required if you want to use the default data collator. |
|
max_target_length (`int`, defaults to `None`): |
|
The maximum length of the target. This argument is required if you want to use the default data collator and your model is an encoder-decoder. |
|
peft_config (`Dict`, defaults to `None`): |
|
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model. |
|
is_encoder_decoder (`Optional[bool]`, `optional`, defaults to `None`): |
|
If no model is provided, we need to know if the model_init returns an encoder-decoder. |
|
disable_dropout (`bool`, defaults to `True`): |
|
Whether or not to disable dropouts in `model` and `ref_model`. |
|
generate_during_eval (`bool`, defaults to `False`): |
|
Whether to sample and log generations during evaluation step. |
|
compute_metrics (`Callable[[EvalPrediction], Dict]`, *optional*): |
|
The function to use to compute the metrics. Must take a `EvalPrediction` and return |
|
a dictionary string to metric values. |
|
precompute_ref_log_probs (`bool`, defaults to `False`): |
|
Flag to precompute reference model log probabilities for training and evaluation datasets. This is useful if you want to train |
|
without the reference model and reduce the total GPU memory needed. |
|
dataset_num_proc (`Optional[int]`, *optional*): |
|
The number of workers to use to tokenize the data. Defaults to None. |
|
model_init_kwargs (`Optional[Dict]`, *optional*): |
|
Dict of Optional kwargs to pass when instantiating the model from a string |
|
ref_model_init_kwargs (`Optional[Dict]`, *optional*): |
|
Dict of Optional kwargs to pass when instantiating the ref model from a string |
|
model_adapter_name (`str`, defaults to `None`): |
|
Name of the train target PEFT adapter, when using LoRA with multiple adapters. |
|
ref_adapter_name (`str`, defaults to `None`): |
|
Name of the reference PEFT adapter, when using LoRA with multiple adapters. |
|
reference_free (`bool`): |
|
If True, we ignore the _provided_ reference model and implicitly use a reference model that assigns equal probability to all responses. |
|
force_use_ref_model (`bool`, defaults to `False`): |
|
In case one passes a PEFT model for the active model and you want to use a different model for the ref_model, set this flag to `True`. |
|
""" |
|
|
|
_tag_names = ["trl", "dpo"] |
|
|
|
def __init__( |
|
self, |
|
model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, |
|
ref_model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, |
|
beta: float = 0.1, |
|
label_smoothing: float = 0, |
|
loss_type: Literal["sigmoid", "hinge", "ipo", "kto_pair"] = "sigmoid", |
|
args: Optional[TrainingArguments] = None, |
|
data_collator: Optional[DataCollator] = None, |
|
label_pad_token_id: int = -100, |
|
padding_value: Optional[int] = None, |
|
truncation_mode: str = "keep_end", |
|
train_dataset: Optional[Dataset] = None, |
|
eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None, |
|
tokenizer: Optional[PreTrainedTokenizerBase] = None, |
|
model_init: Optional[Callable[[], PreTrainedModel]] = None, |
|
callbacks: Optional[List[TrainerCallback]] = None, |
|
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), |
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
max_length: Optional[int] = None, |
|
max_prompt_length: Optional[int] = None, |
|
max_target_length: Optional[int] = None, |
|
peft_config: Optional[Dict] = None, |
|
is_encoder_decoder: Optional[bool] = None, |
|
disable_dropout: bool = True, |
|
generate_during_eval: bool = False, |
|
compute_metrics: Optional[Callable[[EvalLoopOutput], Dict]] = None, |
|
precompute_ref_log_probs: bool = False, |
|
dataset_num_proc: Optional[int] = None, |
|
model_init_kwargs: Optional[Dict] = None, |
|
ref_model_init_kwargs: Optional[Dict] = None, |
|
model_adapter_name: Optional[str] = None, |
|
ref_adapter_name: Optional[str] = None, |
|
reference_free: bool = False, |
|
force_use_ref_model: bool = False, |
|
): |
|
if model_init_kwargs is None: |
|
model_init_kwargs = {} |
|
elif not isinstance(model, str): |
|
raise ValueError("You passed model_kwargs to the DPOTrainer. But your model is already instantiated.") |
|
|
|
if ref_model_init_kwargs is None: |
|
ref_model_init_kwargs = {} |
|
elif not isinstance(ref_model, str): |
|
raise ValueError( |
|
"You passed ref_model_kwargs to the DPOTrainer. But your ref_model is already instantiated." |
|
) |
|
|
|
if isinstance(model, str): |
|
warnings.warn( |
|
"You passed a model_id to the DPOTrainer. This will automatically create an " |
|
"`AutoModelForCausalLM` or a `PeftModel` (if you passed a `peft_config`) for you." |
|
) |
|
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) |
|
|
|
if isinstance(ref_model, str): |
|
warnings.warn( |
|
"You passed a ref model_id to the DPOTrainer. This will automatically create an " |
|
"`AutoModelForCausalLM`" |
|
) |
|
ref_model = AutoModelForCausalLM.from_pretrained(ref_model, **ref_model_init_kwargs) |
|
|
|
|
|
|
|
self._peft_has_been_casted_to_bf16 = False |
|
|
|
if not is_peft_available() and peft_config is not None: |
|
raise ValueError( |
|
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" |
|
) |
|
elif is_peft_available() and peft_config is not None: |
|
|
|
if isinstance(model, PeftModel): |
|
model = model.merge_and_unload() |
|
|
|
if ref_model is not None and not force_use_ref_model: |
|
raise ValueError( |
|
"You passed both a ref_model and a peft_config. For training PEFT adapters with DPO there is no need to pass a reference" |
|
" model. Please pass `ref_model=None` in case you want to train PEFT adapters, or pass a ref_model with `force_use_ref_model=True` in DPOTrainer's init." |
|
" if you want to use a different ref_model." |
|
) |
|
|
|
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): |
|
_support_gc_kwargs = hasattr( |
|
args, "gradient_checkpointing_kwargs" |
|
) and "gradient_checkpointing_kwargs" in list( |
|
inspect.signature(prepare_model_for_kbit_training).parameters |
|
) |
|
|
|
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} |
|
|
|
if _support_gc_kwargs: |
|
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs |
|
|
|
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) |
|
elif getattr(args, "gradient_checkpointing", False): |
|
|
|
if hasattr(model, "enable_input_require_grads"): |
|
model.enable_input_require_grads() |
|
else: |
|
|
|
def make_inputs_require_grad(module, input, output): |
|
output.requires_grad_(True) |
|
|
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
|
|
model = get_peft_model(model, peft_config) |
|
if args.bf16 and getattr(model, "is_loaded_in_4bit", False): |
|
peft_module_casting_to_bf16(model) |
|
|
|
self._peft_has_been_casted_to_bf16 = True |
|
|
|
|
|
|
|
|
|
elif getattr(args, "gradient_checkpointing", False): |
|
|
|
if hasattr(model, "enable_input_require_grads"): |
|
model.enable_input_require_grads() |
|
else: |
|
|
|
def make_inputs_require_grad(module, input, output): |
|
output.requires_grad_(True) |
|
|
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
if generate_during_eval and not is_wandb_available(): |
|
raise ValueError( |
|
"`generate_during_eval=True` requires Weights and Biases to be installed." |
|
" Please install `wandb` to resolve." |
|
) |
|
|
|
if model is not None: |
|
self.is_encoder_decoder = model.config.is_encoder_decoder |
|
elif is_encoder_decoder is None: |
|
raise ValueError("When no model is provided, you need to pass the parameter is_encoder_decoder.") |
|
else: |
|
self.is_encoder_decoder = is_encoder_decoder |
|
|
|
self.is_peft_model = is_peft_available() and isinstance(model, PeftModel) |
|
self.model_adapter_name = model_adapter_name |
|
self.ref_adapter_name = ref_adapter_name |
|
self.reference_free = reference_free |
|
|
|
if ref_model: |
|
self.ref_model = ref_model |
|
elif self.is_peft_model or precompute_ref_log_probs: |
|
|
|
self.ref_model = None |
|
else: |
|
self.ref_model = create_reference_model(model) |
|
|
|
if tokenizer is None: |
|
raise ValueError("tokenizer must be specified to tokenize a DPO dataset.") |
|
if max_length is None: |
|
warnings.warn( |
|
"`max_length` is not set in the DPOTrainer's init" |
|
" it will default to `512` by default, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
max_length = 512 |
|
if max_prompt_length is None: |
|
warnings.warn( |
|
"`max_prompt_length` is not set in the DPOTrainer's init" |
|
" it will default to `128` by default, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
max_prompt_length = 128 |
|
|
|
if max_target_length is None and self.is_encoder_decoder: |
|
warnings.warn( |
|
"When using an encoder decoder architecture, you should set `max_target_length` in the DPOTrainer's init" |
|
" it will default to `128` by default, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
max_target_length = 128 |
|
|
|
if data_collator is None: |
|
data_collator = DPODataCollatorWithPadding( |
|
pad_token_id=tokenizer.pad_token_id, |
|
label_pad_token_id=label_pad_token_id, |
|
is_encoder_decoder=self.is_encoder_decoder, |
|
) |
|
|
|
if args.remove_unused_columns: |
|
args.remove_unused_columns = False |
|
|
|
warnings.warn( |
|
"When using DPODataCollatorWithPadding, you should set `remove_unused_columns=False` in your TrainingArguments" |
|
" we have set it for you, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
|
|
self.use_dpo_data_collator = True |
|
else: |
|
self.use_dpo_data_collator = False |
|
|
|
if disable_dropout: |
|
disable_dropout_in_model(model) |
|
if self.ref_model is not None: |
|
disable_dropout_in_model(self.ref_model) |
|
|
|
self.max_length = max_length |
|
self.generate_during_eval = generate_during_eval |
|
self.label_pad_token_id = label_pad_token_id |
|
self.padding_value = padding_value if padding_value is not None else tokenizer.pad_token_id |
|
self.max_prompt_length = max_prompt_length |
|
self.truncation_mode = truncation_mode |
|
self.max_target_length = max_target_length |
|
self.tokenizer = tokenizer |
|
self.precompute_ref_log_probs = precompute_ref_log_probs |
|
|
|
|
|
|
|
self._precomputed_train_ref_log_probs = False |
|
self._precomputed_eval_ref_log_probs = False |
|
|
|
if loss_type in ["hinge", "ipo", "kto_pair"] and label_smoothing > 0: |
|
warnings.warn( |
|
"You are using a loss type that does not support label smoothing. Ignoring label_smoothing parameter." |
|
) |
|
|
|
self.beta = beta |
|
self.label_smoothing = label_smoothing |
|
self.loss_type = loss_type |
|
|
|
self._stored_metrics = defaultdict(lambda: defaultdict(list)) |
|
|
|
self.dataset_num_proc = dataset_num_proc |
|
|
|
|
|
|
|
with PartialState().local_main_process_first(): |
|
|
|
train_dataset = train_dataset.map(self.tokenize_row, num_proc=self.dataset_num_proc) |
|
if eval_dataset is not None: |
|
eval_dataset = eval_dataset.map(self.tokenize_row, num_proc=self.dataset_num_proc) |
|
|
|
super().__init__( |
|
model=model, |
|
args=args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
tokenizer=tokenizer, |
|
model_init=model_init, |
|
compute_metrics=compute_metrics, |
|
callbacks=callbacks, |
|
optimizers=optimizers, |
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
) |
|
|
|
|
|
if hasattr(self.model, "add_model_tags"): |
|
self.model.add_model_tags(self._tag_names) |
|
|
|
if not hasattr(self, "accelerator"): |
|
raise AttributeError( |
|
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." |
|
) |
|
|
|
|
|
if self.is_deepspeed_enabled: |
|
if self.accelerator.state.deepspeed_plugin.zero_stage == 3 and self.precompute_ref_log_probs: |
|
raise ValueError( |
|
"You cannot use `precompute_ref_log_probs=True` with Deepspeed ZeRO-3. Please set `precompute_ref_log_probs=False`." |
|
) |
|
|
|
if self.ref_model is None: |
|
if not (self.is_peft_model or self.precompute_ref_log_probs): |
|
raise ValueError( |
|
"No reference model and model is not a Peft model. Try setting `precompute_ref_log_probs=True`" |
|
) |
|
else: |
|
if self.is_deepspeed_enabled: |
|
self.ref_model = self._prepare_deepspeed(self.ref_model) |
|
else: |
|
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) |
|
|
|
def _prepare_deepspeed(self, model: PreTrainedModelWrapper): |
|
|
|
deepspeed_plugin = self.accelerator.state.deepspeed_plugin |
|
config_kwargs = deepcopy(deepspeed_plugin.deepspeed_config) |
|
|
|
if model is not None: |
|
if hasattr(model, "config"): |
|
hidden_size = ( |
|
max(model.config.hidden_sizes) |
|
if getattr(model.config, "hidden_sizes", None) |
|
else getattr(model.config, "hidden_size", None) |
|
) |
|
if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3: |
|
|
|
|
|
config_kwargs.update( |
|
{ |
|
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size, |
|
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size, |
|
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size, |
|
} |
|
) |
|
|
|
|
|
|
|
if config_kwargs["zero_optimization"]["stage"] != 3: |
|
config_kwargs["zero_optimization"]["stage"] = 0 |
|
model, *_ = deepspeed.initialize(model=model, config=config_kwargs) |
|
model.eval() |
|
return model |
|
|
|
def get_train_dataloader(self) -> DataLoader: |
|
""" |
|
Returns the training [`~torch.utils.data.DataLoader`]. |
|
|
|
Subclass of transformers.src.transformers.trainer.get_train_dataloader to precompute `ref_log_probs`. |
|
""" |
|
|
|
if self.precompute_ref_log_probs and not self._precomputed_train_ref_log_probs: |
|
dataloader_params = { |
|
"batch_size": self.args.per_device_train_batch_size, |
|
"collate_fn": self.data_collator, |
|
"num_workers": self.args.dataloader_num_workers, |
|
"pin_memory": self.args.dataloader_pin_memory, |
|
"shuffle": False, |
|
} |
|
|
|
|
|
data_loader = self.accelerator.prepare(DataLoader(self.train_dataset, **dataloader_params)) |
|
|
|
reference_chosen_logps = [] |
|
reference_rejected_logps = [] |
|
for padded_batch in tqdm(iterable=data_loader, desc="Train dataset reference log probs"): |
|
reference_chosen_logp, reference_rejected_logp = self.compute_reference_log_probs(padded_batch) |
|
reference_chosen_logp, reference_rejected_logp = self.accelerator.gather_for_metrics( |
|
(reference_chosen_logp, reference_rejected_logp) |
|
) |
|
reference_chosen_logps.append(reference_chosen_logp.cpu()) |
|
reference_rejected_logps.append(reference_rejected_logp.cpu()) |
|
|
|
all_reference_chosen_logps = torch.cat(reference_chosen_logps).float().numpy() |
|
all_reference_rejected_logps = torch.cat(reference_rejected_logps).float().numpy() |
|
|
|
self.train_dataset = self.train_dataset.add_column( |
|
name="reference_chosen_logps", column=all_reference_chosen_logps |
|
) |
|
self.train_dataset = self.train_dataset.add_column( |
|
name="reference_rejected_logps", column=all_reference_rejected_logps |
|
) |
|
|
|
self._precomputed_train_ref_log_probs = True |
|
|
|
return super().get_train_dataloader() |
|
|
|
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader: |
|
""" |
|
Returns the evaluation [`~torch.utils.data.DataLoader`]. |
|
|
|
Subclass of transformers.src.transformers.trainer.get_eval_dataloader to precompute `ref_log_probs`. |
|
|
|
Args: |
|
eval_dataset (`torch.utils.data.Dataset`, *optional*): |
|
If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted |
|
by the `model.forward()` method are automatically removed. It must implement `__len__`. |
|
""" |
|
if eval_dataset is None and self.eval_dataset is None: |
|
raise ValueError("Trainer: evaluation requires an eval_dataset.") |
|
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset |
|
|
|
if self.precompute_ref_log_probs and not self._precomputed_eval_ref_log_probs: |
|
dataloader_params = { |
|
"batch_size": self.args.per_device_eval_batch_size, |
|
"collate_fn": self.data_collator, |
|
"num_workers": self.args.dataloader_num_workers, |
|
"pin_memory": self.args.dataloader_pin_memory, |
|
"shuffle": False, |
|
} |
|
|
|
|
|
data_loader = self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params)) |
|
|
|
reference_chosen_logps = [] |
|
reference_rejected_logps = [] |
|
for padded_batch in tqdm(iterable=data_loader, desc="Eval dataset reference log probs"): |
|
reference_chosen_logp, reference_rejected_logp = self.compute_reference_log_probs(padded_batch) |
|
reference_chosen_logp, reference_rejected_logp = self.accelerator.gather_for_metrics( |
|
(reference_chosen_logp, reference_rejected_logp) |
|
) |
|
reference_chosen_logps.append(reference_chosen_logp.cpu()) |
|
reference_rejected_logps.append(reference_rejected_logp.cpu()) |
|
|
|
all_reference_chosen_logps = torch.cat(reference_chosen_logps).float().numpy() |
|
all_reference_rejected_logps = torch.cat(reference_rejected_logps).float().numpy() |
|
|
|
eval_dataset = eval_dataset.add_column(name="reference_chosen_logps", column=all_reference_chosen_logps) |
|
eval_dataset = eval_dataset.add_column( |
|
name="reference_rejected_logps", column=all_reference_rejected_logps |
|
) |
|
|
|
|
|
if self.eval_dataset is not None: |
|
self.eval_dataset = eval_dataset |
|
self._precomputed_eval_ref_log_probs = True |
|
|
|
return super().get_eval_dataloader(eval_dataset=eval_dataset) |
|
|
|
def build_tokenized_answer(self, prompt, answer): |
|
""" |
|
Llama tokenizer does satisfy `enc(a + b) = enc(a) + enc(b)`. |
|
It does ensure `enc(a + b) = enc(a) + enc(a + b)[len(enc(a)):]`. |
|
Reference: |
|
https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257 |
|
""" |
|
|
|
full_tokenized = self.tokenizer(prompt + answer, add_special_tokens=False) |
|
prompt_input_ids = self.tokenizer(prompt, add_special_tokens=False)["input_ids"] |
|
|
|
answer_input_ids = full_tokenized["input_ids"][len(prompt_input_ids) :] |
|
answer_attention_mask = full_tokenized["attention_mask"][len(prompt_input_ids) :] |
|
|
|
|
|
full_concat_input_ids = np.concatenate([prompt_input_ids, answer_input_ids]) |
|
|
|
|
|
full_input_ids = np.array(full_tokenized["input_ids"]) |
|
|
|
if len(full_input_ids) != len(full_concat_input_ids): |
|
raise ValueError("Prompt input ids and answer input ids should have the same length.") |
|
|
|
|
|
|
|
|
|
|
|
response_token_ids_start_idx = len(prompt_input_ids) |
|
|
|
|
|
|
|
if prompt_input_ids != full_tokenized["input_ids"][:response_token_ids_start_idx]: |
|
response_token_ids_start_idx -= 1 |
|
|
|
prompt_input_ids = full_tokenized["input_ids"][:response_token_ids_start_idx] |
|
prompt_attention_mask = full_tokenized["attention_mask"][:response_token_ids_start_idx] |
|
|
|
if len(prompt_input_ids) != len(prompt_attention_mask): |
|
raise ValueError("Prompt input ids and attention mask should have the same length.") |
|
|
|
answer_input_ids = full_tokenized["input_ids"][response_token_ids_start_idx:] |
|
answer_attention_mask = full_tokenized["attention_mask"][response_token_ids_start_idx:] |
|
|
|
return dict( |
|
prompt_input_ids=prompt_input_ids, |
|
prompt_attention_mask=prompt_attention_mask, |
|
input_ids=answer_input_ids, |
|
attention_mask=answer_attention_mask, |
|
) |
|
|
|
def tokenize_row(self, feature, model: Optional[Union[PreTrainedModel, nn.Module]] = None) -> Dict: |
|
"""Tokenize a single row from a DPO specific dataset. |
|
|
|
At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation |
|
in case the prompt + chosen or prompt + rejected responses is/are too long. First |
|
we truncate the prompt; if we're still too long, we truncate the chosen/rejected. |
|
|
|
We also create the labels for the chosen/rejected responses, which are of length equal to |
|
the sum of the length of the prompt and the chosen/rejected response, with |
|
label_pad_token_id for the prompt tokens. |
|
""" |
|
batch = {} |
|
prompt = feature["prompt"] |
|
chosen = feature["chosen"] |
|
rejected = feature["rejected"] |
|
|
|
if not self.tokenizer.bos_token_id: |
|
self.tokenizer.bos_token_id = self.tokenizer.eos_token_id |
|
self.tokenizer.add_special_tokens({"bos_token": self.tokenizer.eos_token}) |
|
|
|
if not self.is_encoder_decoder: |
|
|
|
|
|
|
|
|
|
|
|
if not isinstance(prompt, str): |
|
raise ValueError(f"prompt should be an str but got {type(prompt)}") |
|
prompt_tokens = self.tokenizer(prompt, add_special_tokens=False) |
|
prompt_tokens = {f"prompt_{k}": v for k, v in prompt_tokens.items()} |
|
|
|
if not isinstance(chosen, str): |
|
raise ValueError(f"chosen should be an str but got {type(chosen)}") |
|
chosen_tokens = self.build_tokenized_answer(prompt, chosen) |
|
|
|
if not isinstance(rejected, str): |
|
raise ValueError(f"rejected should be an str but got {type(rejected)}") |
|
rejected_tokens = self.build_tokenized_answer(prompt, rejected) |
|
|
|
|
|
|
|
prompt_len_input_ids = len(prompt_tokens["prompt_input_ids"]) |
|
|
|
chosen_prompt_len_input_ids = len(chosen_tokens["prompt_input_ids"]) |
|
rejected_prompt_len_input_ids = len(rejected_tokens["prompt_input_ids"]) |
|
prompt_len_input_ids = min(chosen_prompt_len_input_ids, rejected_prompt_len_input_ids) |
|
|
|
for k, v in prompt_tokens.items(): |
|
prompt_tokens[k] = v[:prompt_len_input_ids] |
|
|
|
|
|
|
|
num_diff_tokens = sum( |
|
[a != b for a, b in zip(chosen_tokens["prompt_input_ids"], rejected_tokens["prompt_input_ids"])] |
|
) |
|
num_diff_len = abs(chosen_prompt_len_input_ids - rejected_prompt_len_input_ids) |
|
if num_diff_tokens > 1 or num_diff_len > 1: |
|
raise ValueError( |
|
"Chosen and rejected prompt_input_ids might only differ on the " |
|
"last token due to tokenizer merge ops." |
|
) |
|
|
|
|
|
prompt_tokens["prompt_input_ids"] = [self.tokenizer.bos_token_id] + prompt_tokens["prompt_input_ids"] |
|
chosen_tokens["prompt_input_ids"] = [self.tokenizer.bos_token_id] + chosen_tokens["prompt_input_ids"] |
|
rejected_tokens["prompt_input_ids"] = [self.tokenizer.bos_token_id] + rejected_tokens["prompt_input_ids"] |
|
|
|
prompt_tokens["prompt_attention_mask"] = [1] + prompt_tokens["prompt_attention_mask"] |
|
chosen_tokens["prompt_attention_mask"] = [1] + chosen_tokens["prompt_attention_mask"] |
|
rejected_tokens["prompt_attention_mask"] = [1] + rejected_tokens["prompt_attention_mask"] |
|
|
|
|
|
|
|
|
|
chosen_tokens["input_ids"].append(self.tokenizer.eos_token_id) |
|
|
|
chosen_tokens["attention_mask"].append(1) |
|
|
|
|
|
rejected_tokens["input_ids"].append(self.tokenizer.eos_token_id) |
|
rejected_tokens["attention_mask"].append(1) |
|
|
|
longer_response_length = max(len(chosen_tokens["input_ids"]), len(rejected_tokens["input_ids"])) |
|
|
|
|
|
for answer_tokens in [chosen_tokens, rejected_tokens, prompt_tokens]: |
|
if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length: |
|
if self.truncation_mode == "keep_start": |
|
for k in ["prompt_input_ids", "prompt_attention_mask"]: |
|
answer_tokens[k] = answer_tokens[k][: self.max_prompt_length] |
|
elif self.truncation_mode == "keep_end": |
|
for k in ["prompt_input_ids", "prompt_attention_mask"]: |
|
answer_tokens[k] = answer_tokens[k][-self.max_prompt_length :] |
|
else: |
|
raise ValueError(f"Unknown truncation mode: {self.truncation_mode}") |
|
|
|
|
|
for answer_tokens in [chosen_tokens, rejected_tokens]: |
|
if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length: |
|
for k in ["input_ids", "attention_mask"]: |
|
answer_tokens[k] = answer_tokens[k][: self.max_length - self.max_prompt_length] |
|
|
|
|
|
chosen_sequence_tokens = { |
|
k: chosen_tokens[f"prompt_{k}"] + chosen_tokens[k] for k in ["input_ids", "attention_mask"] |
|
} |
|
rejected_sequence_tokens = { |
|
k: rejected_tokens[f"prompt_{k}"] + rejected_tokens[k] for k in ["input_ids", "attention_mask"] |
|
} |
|
chosen_sequence_tokens["labels"] = chosen_sequence_tokens["input_ids"][:] |
|
chosen_sequence_tokens["labels"][: len(chosen_tokens["prompt_input_ids"])] = [ |
|
self.label_pad_token_id |
|
] * len(chosen_tokens["prompt_input_ids"]) |
|
rejected_sequence_tokens["labels"] = rejected_sequence_tokens["input_ids"][:] |
|
rejected_sequence_tokens["labels"][: len(rejected_tokens["prompt_input_ids"])] = [ |
|
self.label_pad_token_id |
|
] * len(rejected_tokens["prompt_input_ids"]) |
|
|
|
for k, toks in { |
|
"chosen_": chosen_sequence_tokens, |
|
"rejected_": rejected_sequence_tokens, |
|
"": prompt_tokens, |
|
}.items(): |
|
for type_key, tokens in toks.items(): |
|
if type_key == "token_type_ids": |
|
continue |
|
batch[f"{k}{type_key}"] = tokens |
|
|
|
|
|
|
|
|
|
else: |
|
chosen_tokens = self.tokenizer( |
|
chosen, truncation=True, max_length=self.max_target_length, add_special_tokens=True |
|
) |
|
rejected_tokens = self.tokenizer( |
|
rejected, truncation=True, max_length=self.max_target_length, add_special_tokens=True |
|
) |
|
prompt_tokens = self.tokenizer( |
|
prompt, truncation=True, max_length=self.max_prompt_length, add_special_tokens=True |
|
) |
|
|
|
batch["chosen_labels"] = chosen_tokens["input_ids"] |
|
batch["rejected_labels"] = rejected_tokens["input_ids"] |
|
batch["prompt_input_ids"] = prompt_tokens["input_ids"] |
|
batch["prompt_attention_mask"] = prompt_tokens["attention_mask"] |
|
|
|
if model is not None and hasattr(model, "prepare_decoder_input_ids_from_labels"): |
|
batch["rejected_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels( |
|
labels=torch.tensor(batch["rejected_labels"]) |
|
) |
|
batch["chosen_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels( |
|
labels=torch.tensor(batch["chosen_labels"]) |
|
) |
|
|
|
return batch |
|
|
|
@contextmanager |
|
def null_ref_context(self): |
|
"""Context manager for handling null reference model (that is, peft adapter manipulation).""" |
|
with self.accelerator.unwrap_model( |
|
self.model |
|
).disable_adapter() if self.is_peft_model and not self.ref_adapter_name else nullcontext(): |
|
if self.ref_adapter_name: |
|
self.model.set_adapter(self.ref_adapter_name) |
|
yield |
|
if self.ref_adapter_name: |
|
self.model.set_adapter(self.model_adapter_name or "default") |
|
|
|
def compute_reference_log_probs(self, padded_batch: Dict) -> Dict: |
|
"""Computes log probabilities of the reference model for a single padded batch of a DPO specific dataset.""" |
|
compte_ref_context_manager = torch.cuda.amp.autocast if self._peft_has_been_casted_to_bf16 else nullcontext |
|
|
|
|
|
with torch.no_grad(), compte_ref_context_manager(): |
|
if self.ref_model is None: |
|
with self.null_ref_context(): |
|
( |
|
reference_chosen_logps, |
|
reference_rejected_logps, |
|
_, |
|
_, |
|
) = self.concatenated_forward(self.model, padded_batch) |
|
else: |
|
( |
|
reference_chosen_logps, |
|
reference_rejected_logps, |
|
_, |
|
_, |
|
) = self.concatenated_forward(self.ref_model, padded_batch) |
|
|
|
return reference_chosen_logps, reference_rejected_logps |
|
|
|
@staticmethod |
|
def concatenated_inputs( |
|
batch: Dict[str, Union[List, torch.LongTensor]], |
|
is_encoder_decoder: bool = False, |
|
label_pad_token_id: int = -100, |
|
padding_value: int = 0, |
|
device: Optional[torch.device] = None, |
|
) -> Dict[str, torch.LongTensor]: |
|
"""Concatenate the chosen and rejected inputs into a single tensor. |
|
|
|
Args: |
|
batch: A batch of data. Must contain the keys 'chosen_input_ids' and 'rejected_input_ids', which are tensors of shape (batch_size, sequence_length). |
|
is_encoder_decoder: Whether the model is an encoder-decoder model. |
|
label_pad_token_id: The label pad token id. |
|
padding_value: The padding value to use for the concatenated inputs_ids. |
|
device: The device for the concatenated inputs. |
|
|
|
Returns: |
|
A dictionary containing the concatenated inputs under the key 'concatenated_input_ids'. |
|
""" |
|
concatenated_batch = {} |
|
|
|
if is_encoder_decoder: |
|
max_length = max(batch["chosen_labels"].shape[1], batch["rejected_labels"].shape[1]) |
|
else: |
|
max_length = max(batch["chosen_input_ids"].shape[1], batch["rejected_input_ids"].shape[1]) |
|
|
|
for k in batch: |
|
if k.startswith("chosen") and isinstance(batch[k], torch.Tensor): |
|
if "labels" in k or is_encoder_decoder: |
|
pad_value = label_pad_token_id |
|
elif k.endswith("_input_ids"): |
|
pad_value = padding_value |
|
elif k.endswith("_attention_mask"): |
|
pad_value = 0 |
|
concatenated_key = k.replace("chosen", "concatenated") |
|
concatenated_batch[concatenated_key] = pad_to_length(batch[k], max_length, pad_value=pad_value) |
|
for k in batch: |
|
if k.startswith("rejected") and isinstance(batch[k], torch.Tensor): |
|
if "labels" in k or is_encoder_decoder: |
|
pad_value = label_pad_token_id |
|
elif k.endswith("_input_ids"): |
|
pad_value = padding_value |
|
elif k.endswith("_attention_mask"): |
|
pad_value = 0 |
|
concatenated_key = k.replace("rejected", "concatenated") |
|
concatenated_batch[concatenated_key] = torch.cat( |
|
( |
|
concatenated_batch[concatenated_key], |
|
pad_to_length(batch[k], max_length, pad_value=pad_value), |
|
), |
|
dim=0, |
|
).to(device=device) |
|
|
|
if is_encoder_decoder: |
|
concatenated_batch["concatenated_input_ids"] = batch["prompt_input_ids"].repeat(2, 1).to(device=device) |
|
concatenated_batch["concatenated_attention_mask"] = ( |
|
batch["prompt_attention_mask"].repeat(2, 1).to(device=device) |
|
) |
|
|
|
return concatenated_batch |
|
|
|
def dpo_loss( |
|
self, |
|
policy_chosen_logps: torch.FloatTensor, |
|
policy_rejected_logps: torch.FloatTensor, |
|
reference_chosen_logps: torch.FloatTensor, |
|
reference_rejected_logps: torch.FloatTensor, |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: |
|
"""Compute the DPO loss for a batch of policy and reference model log probabilities. |
|
|
|
Args: |
|
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,) |
|
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,) |
|
reference_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape: (batch_size,) |
|
reference_rejected_logps: Log probabilities of the reference model for the rejected responses. Shape: (batch_size,) |
|
|
|
Returns: |
|
A tuple of three tensors: (losses, chosen_rewards, rejected_rewards). |
|
The losses tensor contains the DPO loss for each example in the batch. |
|
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively. |
|
""" |
|
pi_logratios = policy_chosen_logps - policy_rejected_logps |
|
if self.reference_free: |
|
ref_logratios = torch.tensor([0], dtype=pi_logratios.dtype, device=pi_logratios.device) |
|
else: |
|
ref_logratios = reference_chosen_logps - reference_rejected_logps |
|
|
|
pi_logratios = pi_logratios.to(self.accelerator.device) |
|
ref_logratios = ref_logratios.to(self.accelerator.device) |
|
logits = pi_logratios - ref_logratios |
|
|
|
|
|
|
|
|
|
if self.loss_type == "sigmoid": |
|
losses = ( |
|
-F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing) |
|
- F.logsigmoid(-self.beta * logits) * self.label_smoothing |
|
) |
|
elif self.loss_type == "hinge": |
|
losses = torch.relu(1 - self.beta * logits) |
|
elif self.loss_type == "ipo": |
|
|
|
losses = (logits - 1 / (2 * self.beta)) ** 2 |
|
elif self.loss_type == "kto_pair": |
|
|
|
chosen_KL = (policy_chosen_logps - reference_chosen_logps).mean().clamp(min=0) |
|
rejected_KL = (policy_rejected_logps - reference_rejected_logps).mean().clamp(min=0) |
|
|
|
chosen_logratios = policy_chosen_logps - reference_chosen_logps |
|
rejected_logratios = policy_rejected_logps - reference_rejected_logps |
|
|
|
losses = torch.cat( |
|
( |
|
1 - F.sigmoid(self.beta * (chosen_logratios - rejected_KL)), |
|
1 - F.sigmoid(self.beta * (chosen_KL - rejected_logratios)), |
|
), |
|
0, |
|
) |
|
else: |
|
raise ValueError( |
|
f"Unknown loss type: {self.loss_type}. Should be one of ['sigmoid', 'hinge', 'ipo', 'kto_pair']" |
|
) |
|
|
|
chosen_rewards = ( |
|
self.beta |
|
* ( |
|
policy_chosen_logps.to(self.accelerator.device) - reference_chosen_logps.to(self.accelerator.device) |
|
).detach() |
|
) |
|
rejected_rewards = ( |
|
self.beta |
|
* ( |
|
policy_rejected_logps.to(self.accelerator.device) |
|
- reference_rejected_logps.to(self.accelerator.device) |
|
).detach() |
|
) |
|
|
|
return losses, chosen_rewards, rejected_rewards |
|
|
|
@staticmethod |
|
def get_batch_logps( |
|
logits: torch.FloatTensor, |
|
labels: torch.LongTensor, |
|
average_log_prob: bool = False, |
|
label_pad_token_id: int = -100, |
|
is_encoder_decoder: bool = False, |
|
) -> torch.FloatTensor: |
|
"""Compute the log probabilities of the given labels under the given logits. |
|
|
|
Args: |
|
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size) |
|
labels: Labels for which to compute the log probabilities. Label tokens with a value of label_pad_token_id are ignored. Shape: (batch_size, sequence_length) |
|
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens. |
|
label_pad_token_id: The label pad token id. |
|
is_encoder_decoder: Whether the model is an encoder-decoder model. |
|
|
|
Returns: |
|
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits. |
|
""" |
|
if logits.shape[:-1] != labels.shape: |
|
raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.") |
|
|
|
if not is_encoder_decoder: |
|
labels = labels[:, 1:].clone() |
|
logits = logits[:, :-1, :] |
|
loss_mask = labels != label_pad_token_id |
|
|
|
|
|
labels[labels == label_pad_token_id] = 0 |
|
|
|
per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2) |
|
|
|
if average_log_prob: |
|
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) |
|
else: |
|
return (per_token_logps * loss_mask).sum(-1) |
|
|
|
def concatenated_forward( |
|
self, model: nn.Module, batch: Dict[str, Union[List, torch.LongTensor]] |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: |
|
"""Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together. |
|
|
|
We do this to avoid doing two forward passes, because it's faster for FSDP. |
|
""" |
|
concatenated_batch = self.concatenated_inputs( |
|
batch, |
|
is_encoder_decoder=self.is_encoder_decoder, |
|
label_pad_token_id=self.label_pad_token_id, |
|
padding_value=self.padding_value, |
|
device=self.accelerator.device, |
|
) |
|
len_chosen = batch["chosen_labels"].shape[0] |
|
|
|
model_kwargs = ( |
|
{ |
|
"labels": concatenated_batch["concatenated_labels"], |
|
"decoder_input_ids": concatenated_batch.pop("concatenated_decoder_input_ids", None), |
|
} |
|
if self.is_encoder_decoder |
|
else {} |
|
) |
|
all_logits = model( |
|
concatenated_batch["concatenated_input_ids"], |
|
attention_mask=concatenated_batch["concatenated_attention_mask"], |
|
use_cache=False, |
|
**model_kwargs, |
|
).logits |
|
|
|
all_logps = self.get_batch_logps( |
|
all_logits, |
|
concatenated_batch["concatenated_labels"], |
|
average_log_prob=self.loss_type == "ipo", |
|
is_encoder_decoder=self.is_encoder_decoder, |
|
label_pad_token_id=self.label_pad_token_id, |
|
) |
|
|
|
chosen_logps = all_logps[:len_chosen] |
|
rejected_logps = all_logps[len_chosen:] |
|
|
|
chosen_logits = all_logits[:len_chosen] |
|
rejected_logits = all_logits[len_chosen:] |
|
|
|
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits) |
|
|
|
def get_batch_loss_metrics( |
|
self, |
|
model, |
|
batch: Dict[str, Union[List, torch.LongTensor]], |
|
train_eval: Literal["train", "eval"] = "train", |
|
): |
|
"""Compute the DPO loss and other metrics for the given batch of inputs for train or test.""" |
|
metrics = {} |
|
|
|
( |
|
policy_chosen_logps, |
|
policy_rejected_logps, |
|
policy_chosen_logits, |
|
policy_rejected_logits, |
|
) = self.concatenated_forward(model, batch) |
|
|
|
|
|
if "reference_chosen_logps" in batch and "reference_rejected_logps" in batch: |
|
reference_chosen_logps = batch["reference_chosen_logps"] |
|
reference_rejected_logps = batch["reference_rejected_logps"] |
|
else: |
|
with torch.no_grad(): |
|
if self.ref_model is None: |
|
with self.null_ref_context(): |
|
( |
|
reference_chosen_logps, |
|
reference_rejected_logps, |
|
_, |
|
_, |
|
) = self.concatenated_forward(self.model, batch) |
|
else: |
|
( |
|
reference_chosen_logps, |
|
reference_rejected_logps, |
|
_, |
|
_, |
|
) = self.concatenated_forward(self.ref_model, batch) |
|
|
|
losses, chosen_rewards, rejected_rewards = self.dpo_loss( |
|
policy_chosen_logps, |
|
policy_rejected_logps, |
|
reference_chosen_logps, |
|
reference_rejected_logps, |
|
) |
|
reward_accuracies = (chosen_rewards > rejected_rewards).float() |
|
|
|
prefix = "eval_" if train_eval == "eval" else "" |
|
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.mean().cpu() |
|
metrics[f"{prefix}rewards/rejected"] = rejected_rewards.mean().cpu() |
|
metrics[f"{prefix}rewards/accuracies"] = reward_accuracies.mean().cpu() |
|
metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).mean().cpu() |
|
metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.detach().mean().cpu() |
|
metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.detach().mean().cpu() |
|
metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.detach().mean().cpu() |
|
metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.detach().mean().cpu() |
|
|
|
return losses.mean(), metrics |
|
|
|
def compute_loss( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module], |
|
inputs: Dict[str, Union[torch.Tensor, Any]], |
|
return_outputs=False, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, Dict[str, torch.Tensor]]]: |
|
if not self.use_dpo_data_collator: |
|
warnings.warn( |
|
"compute_loss is only implemented for DPODataCollatorWithPadding, and you passed a datacollator that is different than " |
|
"DPODataCollatorWithPadding - you might see unexpected behavior. Alternatively, you can implement your own prediction_step method if you are using a custom data collator" |
|
) |
|
|
|
compute_loss_context_manager = torch.cuda.amp.autocast if self._peft_has_been_casted_to_bf16 else nullcontext |
|
|
|
with compute_loss_context_manager(): |
|
loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="train") |
|
|
|
|
|
loss = loss.to(self.args.device) |
|
|
|
self.store_metrics(metrics, train_eval="train") |
|
|
|
if return_outputs: |
|
return (loss, metrics) |
|
return loss |
|
|
|
def get_batch_samples(self, model, batch: Dict[str, torch.LongTensor]) -> Tuple[str, str]: |
|
"""Generate samples from the model and reference model for the given batch of inputs.""" |
|
|
|
|
|
|
|
generate_context_manager = nullcontext if not self._peft_has_been_casted_to_bf16 else torch.cuda.amp.autocast |
|
|
|
with generate_context_manager(): |
|
policy_output = model.generate( |
|
input_ids=batch["prompt_input_ids"], |
|
attention_mask=batch["prompt_attention_mask"], |
|
max_length=self.max_length, |
|
do_sample=True, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
) |
|
|
|
|
|
if "reference_output" in batch: |
|
reference_output = batch["reference_output"] |
|
else: |
|
if self.ref_model is None: |
|
with self.null_ref_context(): |
|
reference_output = self.model.generate( |
|
input_ids=batch["prompt_input_ids"], |
|
attention_mask=batch["prompt_attention_mask"], |
|
max_length=self.max_length, |
|
do_sample=True, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
) |
|
else: |
|
reference_output = self.ref_model.generate( |
|
input_ids=batch["prompt_input_ids"], |
|
attention_mask=batch["prompt_attention_mask"], |
|
max_length=self.max_length, |
|
do_sample=True, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
) |
|
|
|
policy_output = pad_to_length(policy_output, self.max_length, self.tokenizer.pad_token_id) |
|
policy_output_decoded = self.tokenizer.batch_decode(policy_output, skip_special_tokens=True) |
|
|
|
reference_output = pad_to_length(reference_output, self.max_length, self.tokenizer.pad_token_id) |
|
reference_output_decoded = self.tokenizer.batch_decode(reference_output, skip_special_tokens=True) |
|
|
|
return policy_output_decoded, reference_output_decoded |
|
|
|
def prediction_step( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module], |
|
inputs: Dict[str, Union[torch.Tensor, Any]], |
|
prediction_loss_only: bool, |
|
ignore_keys: Optional[List[str]] = None, |
|
): |
|
if not self.use_dpo_data_collator: |
|
warnings.warn( |
|
"prediction_step is only implemented for DPODataCollatorWithPadding, and you passed a datacollator that is different than " |
|
"DPODataCollatorWithPadding - you might see unexpected behavior. Alternatively, you can implement your own prediction_step method if you are using a custom data collator" |
|
) |
|
if ignore_keys is None: |
|
if hasattr(model, "config"): |
|
ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", []) |
|
else: |
|
ignore_keys = [] |
|
|
|
prediction_context_manager = torch.cuda.amp.autocast if self._peft_has_been_casted_to_bf16 else nullcontext |
|
|
|
with torch.no_grad(), prediction_context_manager(): |
|
loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="eval") |
|
|
|
|
|
self.store_metrics(metrics, train_eval="eval") |
|
|
|
if prediction_loss_only: |
|
return (loss.detach(), None, None) |
|
|
|
|
|
logits_dict = { |
|
"eval_logits/chosen": metrics["eval_logits/chosen"], |
|
"eval_logits/rejected": metrics["eval_logits/rejected"], |
|
} |
|
logits = tuple(v.unsqueeze(dim=0) for k, v in logits_dict.items() if k not in ignore_keys) |
|
logits = torch.stack(logits).mean(axis=1).to(self.accelerator.device) |
|
labels = torch.zeros(logits.shape[0], device=self.accelerator.device) |
|
|
|
return (loss.detach(), logits, labels) |
|
|
|
def store_metrics(self, metrics: Dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None: |
|
for key, value in metrics.items(): |
|
self._stored_metrics[train_eval][key].append(value) |
|
|
|
def evaluation_loop( |
|
self, |
|
dataloader: DataLoader, |
|
description: str, |
|
prediction_loss_only: Optional[bool] = None, |
|
ignore_keys: Optional[List[str]] = None, |
|
metric_key_prefix: str = "eval", |
|
) -> EvalLoopOutput: |
|
""" |
|
Overriding built-in evaluation loop to store metrics for each batch. |
|
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`. |
|
|
|
Works both with or without labels. |
|
""" |
|
|
|
|
|
if self.generate_during_eval: |
|
|
|
num_samples = len(dataloader.dataset) |
|
random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size) |
|
|
|
|
|
random_batch_dataset = dataloader.dataset.select(random_indices) |
|
random_batch = self.data_collator(random_batch_dataset) |
|
random_batch = self._prepare_inputs(random_batch) |
|
|
|
policy_output_decoded, ref_output_decoded = self.get_batch_samples(self.model, random_batch) |
|
|
|
self.log( |
|
{ |
|
"game_log": wandb.Table( |
|
columns=["Prompt", "Policy", "Ref Model"], |
|
rows=[ |
|
[prompt, pol[len(prompt) :], ref[len(prompt) :]] |
|
for prompt, pol, ref in zip( |
|
random_batch["prompt"], policy_output_decoded, ref_output_decoded |
|
) |
|
], |
|
) |
|
} |
|
) |
|
self.state.log_history.pop() |
|
|
|
|
|
initial_output = super().evaluation_loop( |
|
dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix |
|
) |
|
|
|
return initial_output |
|
|
|
def log(self, logs: Dict[str, float]) -> None: |
|
""" |
|
Log `logs` on the various objects watching training, including stored metrics. |
|
|
|
Args: |
|
logs (`Dict[str, float]`): |
|
The values to log. |
|
""" |
|
|
|
train_eval = "train" if "loss" in logs else "eval" |
|
|
|
for key, metrics in self._stored_metrics[train_eval].items(): |
|
logs[key] = torch.tensor(metrics).mean().item() |
|
del self._stored_metrics[train_eval] |
|
return super().log(logs) |
|
|
|
@wraps(Trainer.push_to_hub) |
|
def push_to_hub(self, commit_message: Optional[str] = "End of training", blocking: bool = True, **kwargs) -> str: |
|
""" |
|
Overwrite the `push_to_hub` method in order to force-add the tag "dpo" when pushing the |
|
model on the Hub. Please refer to `~transformers.Trainer.push_to_hub` for more details. |
|
""" |
|
kwargs = trl_sanitze_kwargs_for_tagging(model=self.model, tag_names=self._tag_names, kwargs=kwargs) |
|
|
|
return super().push_to_hub(commit_message=commit_message, blocking=blocking, **kwargs) |
|
|