MultiTalk-Code / eval_avlr /eval_avlr.py
ameerazam08's picture
Upload folder using huggingface_hub
6931c7b verified
# Copyright (c) Meta Platforms, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import cv2
import sys
import time
import random
import shutil
import hashlib
import logging
import argparse
#import gradio as gr
from tqdm import tqdm
from pathlib import Path
from ffmpy import FFmpeg
import glob
import pdb
import torchaudio
import random
import torch
import numpy as np
from scipy.io import wavfile
from jiwer import wer, cer
import json
from faster_whisper import WhisperModel
import shutil
random_seed=1234
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
sys.path.insert(0, str(Path(__file__).parent.parent))
from demo_utils import *sh scripts/demo.sh multi
from utils import (
split_video_to_frames,
resize_frames,
crop_patch,
save_video,
)
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
def detect_landmark(image):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
rects = DETECTOR(gray, 1)
coords = None
for (_, rect) in enumerate(rects):
shape = PREDICTOR(gray, rect)
coords = np.zeros((68, 2), dtype=np.int32)
for i in range(0, 68):
coords[i] = (shape.part(i).x, shape.part(i).y)
return coords
@track_time
def extract_lip_movement(
webcam_video,
in_video_filepath,
out_lip_filepath,
num_workers
):
def copy_video_if_ready(webcam_video, out_path):
with open(webcam_video, 'rb') as fin:
curr_md5hash = hashlib.md5(fin.read()).hexdigest()
# check if the current hash matches anything in the cache
if curr_md5hash in VIDEOS_CACHE:
dst_path = VIDEOS_CACHE[curr_md5hash]
# copy needed files
shutil.copy(dst_path / "video.mp4", out_path)
shutil.copy(dst_path / "lip_movement.mp4", out_path)
shutil.copy(dst_path / "raw_video.md5", out_path)
return True
else:
VIDEOS_CACHE[curr_md5hash] = out_path
with open(out_path / "raw_video.md5", 'w') as fout:
fout.write(curr_md5hash)
return False
'''
if copy_video_if_ready(webcam_video, in_video_filepath.parent):
logger.info("Skip video processing; Loading the cached one!!")
return
'''
# change video framerate to 25 and lower resolution for faster processing
logger.info("Adjust video framerate to 25")
if not os.path.isfile(in_video_filepath):
FFmpeg(
inputs={webcam_video: None},
outputs={in_video_filepath: "-v quiet -filter:v fps=fps=25 -vf scale=640:480"},
).run()
# convert video to a list of frames
logger.info("Converting video into frames")
frames = list(split_video_to_frames(in_video_filepath))
# Get face landmarks from video
logger.info("Extract face landmarks from video frames")
landmarks = [
detect_landmark(frame)
for frame in tqdm(frames, desc="Detecting Lip Movement")
]
# landmarks = process_map(
# detect_landmark,
# frames,
# max_workers=num_workers,
# desc="Detecting Lip Movement"
# )
invalid_landmarks_ratio = sum(lnd is None for lnd in landmarks) / len(landmarks)
logger.info(f"Current invalid frame ratio ({invalid_landmarks_ratio}) ")
if invalid_landmarks_ratio > MAX_MISSING_FRAMES_RATIO:
logging.info(
"Invalid frame ratio exceeded maximum allowed ratio!! " +
"Starting resizing the recorded video!!"
)
sequence = resize_frames(frames)
else:
# interpolate frames not being detected (if found).
if invalid_landmarks_ratio != 0:
logger.info("Linearly-interpolate invalid landmarks")
continuous_landmarks = landmarks_interpolate(landmarks)
else:
continuous_landmarks = landmarks
# crop mouth regions
logger.info("Cropping the mouth region.")
sequence = crop_patch(
frames,
len(frames),
continuous_landmarks,
MEAN_FACE_LANDMARKS,
)
# return lip-movement frames
save_video(sequence, out_lip_filepath, fps=25)
def process_input_video(
model_type: str,
input_video_path: str,
noise_snr: int,
noise_type: str,
outpath: str,
):
if input_video_path is None:
raise IOError(
"Gradio didn't record the video. Refresh the web page, please!!"
)
audio_filepath = outpath / "audio.wav"
video_filepath = outpath / "video.mp4"
noisy_audio_filepath = outpath / "noisy_audio.wav"
lip_video_filepath = outpath / "lip_movement.mp4"
if not os.path.isfile(video_filepath) and not os.path.isfile(lip_video_filepath):
# start the lip movement preprocessing pipeline
extract_lip_movement(
input_video_path, video_filepath, lip_video_filepath,
num_workers=min(os.cpu_count(), 5)
)
# mix audio with noise
logger.info(f"Mixing audio with `{noise_type}` noise (SNR={noise_snr}).")
noise_wav_files = NOISE[noise_type]
noise_wav_file = noise_wav_files[random.randint(0, len(noise_wav_files) - 1)]
logger.debug(f"Noise Wav used is {noise_wav_file}")
mixed = mix_audio_with_noise(
input_video_path, audio_filepath, noisy_audio_filepath,
noise_wav_file, noise_snr
)
# combine (audio+noise) with lip-movement
logger.info("Adding noisy audio with the lip-movement video.")
noisy_lip_filepath = outpath / "noisy_lip_movement.mp4"
FFmpeg(
inputs={noisy_audio_filepath: None, lip_video_filepath: None},
outputs={noisy_lip_filepath: "-v quiet -c:v copy -c:a aac"},
).run()
# Infer Audio-Video using Av-HuBERT
av_text = infer_av_hubert(
AV_RESOURCES[model_type]["model"],
AV_RESOURCES[model_type]["task"],
AV_RESOURCES[model_type]["generator"],
lip_video_filepath,
noisy_audio_filepath,
duration=len(mixed) / 16000
)
logger.info(f"Av-HuBERT Output: {av_text}")
logger.info("Summary:")
for k, v in TIME_TRACKER.items():
logger.info(f'Function {k} executed in {v} seconds')
logger.info(30 * '=' + " Done! " + '=' * 30)
return (str(noisy_lip_filepath), av_text)
def test_WER(
model_type: str,
input_video_path: str,
gt_text: str,
noise_type: str,
model_name: str,
noise_name : str,
noise_wav_file : str,
outpath: str,
file_name: str,
is_valid: dict,
):
if input_video_path is None:
raise IOError(
"Gradio didn't record the video. Refresh the web page, please!!"
)
out_filepath = outpath / model_name/file_name
out_filepath.mkdir(parents=True, exist_ok=True)
audio_filepath = out_filepath/ "audio.wav"
video_filepath = out_filepath/ "video.mp4"
noisy_audio_path = outpath / model_name / noise_type / noise_name
noisy_audio_path.mkdir(parents=True, exist_ok=True)
#noisy_audio_filepath = noisy_audio_path / "noisy_audio.wav"
lip_video_filepath = out_filepath / "lip_movement.mp4"
if not os.path.isfile(lip_video_filepath):
# start the lip movement preprocessing pipeline
extract_lip_movement(
input_video_path, video_filepath, lip_video_filepath,
num_workers=min(os.cpu_count(), 5)
)
#noise_wav_files = NOISE[noise_type]
#noise_wav_file = noise_wav_files[random.randint(0, len(noise_wav_files) - 1)]
# mix audio with noise
if not os.path.isfile(audio_filepath):
FFmpeg(
inputs={input_video_path: None},
outputs={audio_filepath: "-v quiet -vn -acodec pcm_s16le -ar 16000 -ac 1"},
).run()
sr, audio = wavfile.read(audio_filepath)
_, noise = wavfile.read(noise_wav_file)
# noise = np.random.normal(0, 1, audio.shape[0])
wer_temp = []
cer_temp = []
'''
## original wer and edit distance
origin_av_text = infer_av_hubert(
AV_RESOURCES[model_type]["model"],
AV_RESOURCES[model_type]["task"],
AV_RESOURCES[model_type]["generator"],
lip_video_filepath,
audio_filepath,
duration=len(audio) / 16000
)
word_error_rate = wer(gt_text.lower().replace('\n', ''), origin_av_text.lower().replace('\n', ''))
character_error_rate = cer(gt_text.lower().replace('\n', ''), origin_av_text.lower().replace('\n', ''))
wer_temp.append(word_error_rate)
cer_temp.append(character_error_rate)
'''
for ns in [-7.5, -10]:
#sr, audio = wavfile.read(audio_filepath)
snr_name = "snr_"+ str(ns)
noisy_audio_ns_path = noisy_audio_path / snr_name / file_name
noisy_audio_ns_path.mkdir(parents=True, exist_ok=True)
noisy_audio_ns_filepath = noisy_audio_ns_path / "noisy_audio.wav"
mixed = add_noise(audio, noise, ns)
if not os.path.isfile(noisy_audio_ns_filepath):
wavfile.write(noisy_audio_ns_filepath, sr, mixed)
# combine (audio+noise) with lip-movement
noisy_lip_filepath = noisy_audio_ns_path / "noisy_lip_movement.mp4"
if not os.path.isfile(noisy_lip_filepath):
FFmpeg(
inputs={noisy_audio_ns_filepath: None, lip_video_filepath: None},
outputs={noisy_lip_filepath: "-v quiet -c:v copy -c:a aac"},
).run()
# Infer Audio-Video using Av-HuBERT
av_text = infer_av_hubert(
AV_RESOURCES[model_type]["model"],
AV_RESOURCES[model_type]["task"],
AV_RESOURCES[model_type]["generator"],
lip_video_filepath,
noisy_audio_ns_filepath,
duration=len(mixed) / 16000
)
av_text = av_text.replace('.','').replace(',','').replace('!','').replace(';','').replace(':','').replace('?','').replace('/','').lower().replace('\n', '').strip()
gt_text = gt_text.replace('.','').replace(',','').replace('!','').replace(';','').replace(':','').replace('?','').replace('/','').lower().replace('\n', '').strip()
word_error_rate = wer(gt_text, av_text)
character_error_rate = cer(gt_text, av_text)
print(f"av_text : {av_text}")
print(f"gt_text : {gt_text}")
'''
if sum(is_valid.values())>=51 and word_error_rate >= 1.0 and ns == -7.5 and (model_name in ["MultiTalk"]):
is_valid[file_name] = 0
'''
print(
f"file_name : {file_name}, snr: {str(ns)}, word_error_rate : {word_error_rate}, character_error_rate : {character_error_rate}, is_valid[file_name] : {is_valid[file_name]}")
wer_temp.append(word_error_rate)
cer_temp.append(character_error_rate)
shutil.rmtree(noisy_audio_ns_path)
return wer_temp, cer_temp, is_valid
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--avhubert-path", type=Path, required=False, default="./av_hubert/avhubert",
help="Relative/Absolute path where avhubert repo is located."
)
parser.add_argument(
"--work-dir", type=Path, required=True,
default="/local_data_2/chaeyeon/interspeech2024/avlr",
help="work directory for avlr evaluation"
)
parser.add_argument(
"--language", type=str, required=True,
default="English",
help="evaluation language"
)
parser.add_argument(
"--model-name", type=str, required=True,
default="all",
help="model name"
)
parser.add_argument(
"--exp-name", type=str, required=True,
default="base",
help="experiment name"
)
args = parser.parse_args()
# start loading resources
logger.info("Loading noise samples..")
start_time = time.time()
work_path = args.work_dir / args.language
input_path = work_path / "inputs"
output_path = work_path / "outputs"
lang_map = {'Arabic': 'ar', 'English': 'en', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Spanish': 'es',
'French': 'fr', 'Greek': 'el', 'Russian': 'ru'}
checkpoint_path = work_path / "checkpoints"
av_model_path = os.path.join(checkpoint_path , lang_map[args.language]+"_avsr")
output_path.mkdir(parents=True, exist_ok=True)
noise_path = args.work_dir / "noise_samples"
NOISE = load_noise_samples(noise_path)
logger.info("Loading AV models!")
if not checkpoint_path.exists():
raise ValueError(
f"av-models-path: `{checkpoint_path}` doesn't exist!!"
)
utils.import_user_module(
argparse.Namespace(user_dir=str(args.avhubert_path))
)
AV_RESOURCES = load_av_models(checkpoint_path)
logger.info("Loading models responsible for preprocessing!")
metadata_path = args.work_dir / "metadata"
DETECTOR, PREDICTOR, MEAN_FACE_LANDMARKS = (
load_needed_models_for_lip_movement(metadata_path)
)
logger.info("Done loading!")
# cache already recorded videos
VIDEOS_CACHE = {}
logger.info("Caching previously recorded videos!")
for hash_path in output_path.rglob("*.md5"):
with open(hash_path) as fin:
md5hash = fin.read()
VIDEOS_CACHE[md5hash] = hash_path.parent
# define input interfaces
if args.model_name == "all":
model_names = ["MultiTalk", "VOCA", "FaceFormer", "CodeTalker"]
#model_names = ["MultiTalk", "FaceFormer"]
#model_names = ["ours", "codetalker_mean", "faceformer_mean", "codetalker_id", "faceformer_id"]
else:
model_names = [args.model_name]
wav_path = input_path / "wav"
# Run on GPU with FP16
model = WhisperModel("large-v3", device="cpu", compute_type="int8")
wer_path = work_path / f'wer_{args.exp_name}.json'
cer_path = work_path / f'cer_{args.exp_name}.json'
is_valid_path = work_path / f'is_valid_{args.exp_name}.json'
noise_types = ["indoors", "indoors", "music"] # [indoors, music, park, party, traffic]
noise_names = ["dog-playing", "kids-playing", "leave_it_to_the_experts"]
snr_values = ['-7.5', '-10']
total_word_error_rate = {}
total_character_error_rate = {}
wer_results = {}
cer_results = {}
video_path = input_path / model_names[0]
video_lists = glob.glob(os.path.join(video_path, "*.mp4"))
sorted_video_lists = sorted(video_lists)
text_path = input_path / "text"
text_path.mkdir(parents=True, exist_ok=True)
text_lists = glob.glob(os.path.join(text_path, "*.txt"))
if len(text_lists) != len(video_lists):
for vid in sorted_video_lists:
file_name = vid.split("/")[-1].split(".")[0]
# gt text
wav_file = os.path.join(wav_path, file_name + ".wav")
segments, info = model.transcribe(audio=wav_file, language=lang_map[args.language],
beam_size=5)
text = ''
for segment in segments:
text = text + segment.text
text_file = os.path.join(text_path, file_name + ".txt")
with open(text_file, 'w') as f:
f.write(text.replace('.','').replace(',','').replace('!','').replace(';','').replace(':','').replace('?','').strip())
f.close()
start_eval = time.time()
print(f"Pseudo gt text made in {start_eval - start_time} secs.")
#is_valid = {}
if args.language in ['Greek', 'Italian']:
is_valid_path = work_path / f'is_valid_base_wo_self.json'
elif args.language in ['English', 'French', 'German']:
is_valid_path = work_path / f'is_valid_base.json'
with open(is_valid_path, 'r') as f:
is_valid = json.load(f)
f.close()
'''
for vid in sorted_video_lists :
file_name = vid.split("/")[-1].split(".")[0]
is_valid[file_name] = 1
'''
for model_name in model_names:
total_word_error_rate[model_name] = {}
total_character_error_rate[model_name] = {}
for noise_name in noise_names:
total_word_error_rate[model_name][noise_name]={"-7.5":0.0, "-10":0.0}
total_character_error_rate[model_name][noise_name] = {"-7.5": 0.0, "-10": 0.0}
video_path = input_path / model_name
video_lists = glob.glob(os.path.join(video_path, "*.mp4"))
sorted_video_lists = sorted(video_lists)
for vid in sorted_video_lists:
file_name = vid.split("/")[-1].split(".")[0]
if args.language == "French":
file_name=file_name.replace('F','f',1)
elif args.language == "English":
file_name = file_name.replace('E', 'e', 1)
elif args.language == "Italian":
file_name = file_name.replace('I', 'i', 1)
elif args.language == "Greek":
file_name = file_name.replace('G', 'g', 1)
if is_valid[file_name] == 0:
continue
text_file = os.path.join(text_path, file_name + ".txt")
f = open(text_file, "r")
gt_text = f.readlines()[0]
f.close()
for idx, noise_name in enumerate(noise_names):
if is_valid[file_name] == 0:
continue
noise_type = noise_types[idx]
noise_wav_files = NOISE[noise_type]
noise_type_len = len(noise_wav_files)
noise_index = -1
for noise_idx in range(noise_type_len):
noise_wav_file = noise_wav_files[noise_idx]
noise_temp_name = noise_wav_file.split("/")[-1].split(".")[0]
if noise_name != noise_temp_name:
continue
noise_index = noise_idx
noise_wav_file = noise_wav_files[noise_index]
word_error_rate, character_error_rate, is_valid = test_WER(sorted(AV_RESOURCES.keys())[0], vid, gt_text,
noise_type, model_name, noise_name,
noise_wav_file, output_path, file_name, is_valid)
if is_valid[file_name] == 1:
for snr_idx in range(len(snr_values)):
total_word_error_rate[model_name][noise_name][snr_values[snr_idx]] += word_error_rate[snr_idx]
total_character_error_rate[model_name][noise_name][snr_values[snr_idx]] += character_error_rate[snr_idx]
out_filepath = output_path / model_name / file_name
audio_filepath = out_filepath / "audio.wav"
video_filepath = out_filepath / "video.mp4"
lip_video_filepath = out_filepath / "lip_movement.mp4"
os.remove(audio_filepath)
os.remove(video_filepath)
os.remove(lip_video_filepath)
print(f"sum(is_valid.values) : {sum(is_valid.values())}, len(is_valid) : {len(is_valid)}")
wer_results[model_name] = {"-7.5":0, "-10":0}
cer_results[model_name] = {"-7.5":0, "-10":0}
for snr_value in snr_values:
for noise_name in noise_names:
wer_results[model_name][snr_value] += total_word_error_rate[model_name][noise_name][snr_value]/sum(is_valid.values())
cer_results[model_name][snr_value] += total_character_error_rate[model_name][noise_name][snr_value]/sum(is_valid.values())
wer_results[model_name][snr_value] = wer_results[model_name][snr_value] / len(noise_names)
cer_results[model_name][snr_value] = cer_results[model_name][snr_value] / len(noise_names)
with open(wer_path, 'w') as f:
json.dump(wer_results, f, indent=4)
f.close()
with open(cer_path, 'w') as f:
json.dump(cer_results, f, indent=4)
f.close()
with open(is_valid_path, 'w') as f:
json.dump(is_valid, f, indent=4)
f.close()
print(f"{model_name} end.")
with open(wer_path, 'w') as f:
json.dump(wer_results, f, indent=4)
f.close()
with open(cer_path, 'w') as f:
json.dump(cer_results, f, indent=4)
f.close()
with open(is_valid_path, 'w') as f:
json.dump(is_valid, f, indent=4)
f.close()
print(f"Total end in {time.time()-start_eval} secs.")