ameerazam08's picture
Upload folder using huggingface_hub
6931c7b verified
# Borrowed from https://github.com/EvelynFan/FaceFormer/blob/main/main.py
import torch
import torch.nn as nn
import math
# Temporal Bias
def init_biased_mask(n_head, max_seq_len, period):
def get_slopes(n):
def get_slopes_power_of_2(n):
start = (2**(-2**-(math.log2(n)-3)))
ratio = start
return [start*ratio**i for i in range(n)]
if math.log2(n).is_integer():
return get_slopes_power_of_2(n)
else:
closest_power_of_2 = 2**math.floor(math.log2(n))
return get_slopes_power_of_2(closest_power_of_2) + get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2]
slopes = torch.Tensor(get_slopes(n_head))
bias = torch.div(torch.arange(start=0, end=max_seq_len, step=period).unsqueeze(1).repeat(1,period).view(-1), period, rounding_mode='floor')
bias = - torch.flip(bias,dims=[0])
alibi = torch.zeros(max_seq_len, max_seq_len)
for i in range(max_seq_len):
alibi[i, :i+1] = bias[-(i+1):]
alibi = slopes.unsqueeze(1).unsqueeze(1) * alibi.unsqueeze(0)
mask = (torch.triu(torch.ones(max_seq_len, max_seq_len)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
mask = mask.unsqueeze(0) + alibi
return mask
# Alignment Bias
def enc_dec_mask(device, dataset, T, S):
mask = torch.ones(T, S)
if dataset == "BIWI":
for i in range(T):
mask[i, i*2:i*2+2] = 0
elif dataset == "vocaset":
for i in range(T):
mask[i, i] = 0
elif dataset == "multi":
for i in range(T):
mask[i, i * 2:i * 2 + 2] = 0
return (mask==1).to(device=device)
# Periodic Positional Encoding
class PeriodicPositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, period=25, max_seq_len=600):
super(PeriodicPositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(period, d_model)
position = torch.arange(0, period, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0) # (1, period, d_model)
repeat_num = (max_seq_len//period) + 1
pe = pe.repeat(1, repeat_num, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1), :]
return self.dropout(x)