|
|
|
import torch |
|
import torch.nn as nn |
|
import math |
|
|
|
|
|
|
|
def init_biased_mask(n_head, max_seq_len, period): |
|
def get_slopes(n): |
|
def get_slopes_power_of_2(n): |
|
start = (2**(-2**-(math.log2(n)-3))) |
|
ratio = start |
|
return [start*ratio**i for i in range(n)] |
|
if math.log2(n).is_integer(): |
|
return get_slopes_power_of_2(n) |
|
else: |
|
closest_power_of_2 = 2**math.floor(math.log2(n)) |
|
return get_slopes_power_of_2(closest_power_of_2) + get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2] |
|
slopes = torch.Tensor(get_slopes(n_head)) |
|
bias = torch.div(torch.arange(start=0, end=max_seq_len, step=period).unsqueeze(1).repeat(1,period).view(-1), period, rounding_mode='floor') |
|
bias = - torch.flip(bias,dims=[0]) |
|
alibi = torch.zeros(max_seq_len, max_seq_len) |
|
for i in range(max_seq_len): |
|
alibi[i, :i+1] = bias[-(i+1):] |
|
alibi = slopes.unsqueeze(1).unsqueeze(1) * alibi.unsqueeze(0) |
|
mask = (torch.triu(torch.ones(max_seq_len, max_seq_len)) == 1).transpose(0, 1) |
|
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) |
|
mask = mask.unsqueeze(0) + alibi |
|
return mask |
|
|
|
|
|
def enc_dec_mask(device, dataset, T, S): |
|
mask = torch.ones(T, S) |
|
if dataset == "BIWI": |
|
for i in range(T): |
|
mask[i, i*2:i*2+2] = 0 |
|
elif dataset == "vocaset": |
|
for i in range(T): |
|
mask[i, i] = 0 |
|
elif dataset == "multi": |
|
for i in range(T): |
|
mask[i, i * 2:i * 2 + 2] = 0 |
|
return (mask==1).to(device=device) |
|
|
|
|
|
class PeriodicPositionalEncoding(nn.Module): |
|
def __init__(self, d_model, dropout=0.1, period=25, max_seq_len=600): |
|
super(PeriodicPositionalEncoding, self).__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
pe = torch.zeros(period, d_model) |
|
position = torch.arange(0, period, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
repeat_num = (max_seq_len//period) + 1 |
|
pe = pe.repeat(1, repeat_num, 1) |
|
self.register_buffer('pe', pe) |
|
def forward(self, x): |
|
x = x + self.pe[:, :x.size(1), :] |
|
return self.dropout(x) |
|
|