|
import cv2 |
|
import torch |
|
from utils.commons.image_utils import dilate, erode |
|
from sklearn.neighbors import NearestNeighbors |
|
import copy |
|
import numpy as np |
|
from utils.commons.meters import Timer |
|
|
|
def hold_eye_opened_for_secc(img): |
|
img = img.permute(1,2,0).cpu().numpy() |
|
img = ((img +1)/2*255).astype(np.uint) |
|
face_mask = (img[...,0] != 0) & (img[...,1] != 0) & (img[...,2] != 0) |
|
face_xys = np.stack(np.nonzero(face_mask)).transpose(1, 0) |
|
h,w = face_mask.shape |
|
|
|
left_eye_prior_reigon = np.zeros([h,w], dtype=bool) |
|
right_eye_prior_reigon = np.zeros([h,w], dtype=bool) |
|
left_eye_prior_reigon[h//4:h//2, w//4:w//2] = True |
|
right_eye_prior_reigon[h//4:h//2, w//2:w//4*3] = True |
|
eye_prior_reigon = left_eye_prior_reigon | right_eye_prior_reigon |
|
coarse_eye_mask = (~ face_mask) & eye_prior_reigon |
|
coarse_eye_xys = np.stack(np.nonzero(coarse_eye_mask)).transpose(1, 0) |
|
|
|
opened_eye_mask = cv2.imread('inference/os_avatar/opened_eye_mask.png') |
|
opened_eye_mask = torch.nn.functional.interpolate(torch.tensor(opened_eye_mask).permute(2,0,1).unsqueeze(0), size=(img.shape[0], img.shape[1]), mode='nearest')[0].permute(1,2,0).sum(-1).bool().cpu() |
|
coarse_opened_eye_xys = np.stack(np.nonzero(opened_eye_mask)) |
|
|
|
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(coarse_eye_xys) |
|
dists, _ = nbrs.kneighbors(coarse_opened_eye_xys) |
|
|
|
non_opened_eye_pixs = dists > max(dists.max()*0.75, 4) |
|
non_opened_eye_pixs = non_opened_eye_pixs.reshape([-1]) |
|
opened_eye_xys_to_erode = coarse_opened_eye_xys[non_opened_eye_pixs] |
|
opened_eye_mask[opened_eye_xys_to_erode[...,0], opened_eye_xys_to_erode[...,1]] = False |
|
|
|
img[opened_eye_mask] = 0 |
|
return torch.tensor(img.astype(np.float32) / 127.5 - 1).permute(2,0,1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def blink_eye_for_secc(img, close_eye_percent=0.5): |
|
""" |
|
secc_img: [3,h,w], tensor, -1~1 |
|
""" |
|
img = img.permute(1,2,0).cpu().numpy() |
|
img = ((img +1)/2*255).astype(np.uint) |
|
assert close_eye_percent <= 1.0 and close_eye_percent >= 0. |
|
if close_eye_percent == 0: return torch.tensor(img.astype(np.float32) / 127.5 - 1).permute(2,0,1) |
|
img = copy.deepcopy(img) |
|
face_mask = (img[...,0] != 0) & (img[...,1] != 0) & (img[...,2] != 0) |
|
h,w = face_mask.shape |
|
|
|
|
|
left_eye_prior_reigon = np.zeros([h,w], dtype=bool) |
|
right_eye_prior_reigon = np.zeros([h,w], dtype=bool) |
|
left_eye_prior_reigon[h//4:h//2, w//4:w//2] = True |
|
right_eye_prior_reigon[h//4:h//2, w//2:w//4*3] = True |
|
eye_prior_reigon = left_eye_prior_reigon | right_eye_prior_reigon |
|
coarse_eye_mask = (~ face_mask) & eye_prior_reigon |
|
coarse_left_eye_mask = (~ face_mask) & left_eye_prior_reigon |
|
coarse_right_eye_mask = (~ face_mask) & right_eye_prior_reigon |
|
coarse_eye_xys = np.stack(np.nonzero(coarse_eye_mask)).transpose(1, 0) |
|
min_h = coarse_eye_xys[:, 0].min() |
|
max_h = coarse_eye_xys[:, 0].max() |
|
coarse_left_eye_xys = np.stack(np.nonzero(coarse_left_eye_mask)).transpose(1, 0) |
|
left_min_w = coarse_left_eye_xys[:, 1].min() |
|
left_max_w = coarse_left_eye_xys[:, 1].max() |
|
coarse_right_eye_xys = np.stack(np.nonzero(coarse_right_eye_mask)).transpose(1, 0) |
|
right_min_w = coarse_right_eye_xys[:, 1].min() |
|
right_max_w = coarse_right_eye_xys[:, 1].max() |
|
|
|
|
|
left_eye_prior_reigon = np.zeros([h,w], dtype=bool) |
|
more_room = 4 |
|
left_eye_prior_reigon[min_h-more_room:max_h+more_room, left_min_w-more_room:left_max_w+more_room] = True |
|
right_eye_prior_reigon = np.zeros([h,w], dtype=bool) |
|
right_eye_prior_reigon[min_h-more_room:max_h+more_room, right_min_w-more_room:right_max_w+more_room] = True |
|
eye_prior_reigon = left_eye_prior_reigon | right_eye_prior_reigon |
|
|
|
around_eye_face_mask = face_mask & eye_prior_reigon |
|
face_mask = around_eye_face_mask |
|
face_xys = np.stack(np.nonzero(around_eye_face_mask)).transpose(1, 0) |
|
|
|
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(coarse_eye_xys) |
|
dists, _ = nbrs.kneighbors(face_xys) |
|
face_pixs = dists > 5 |
|
face_pixs = face_pixs.reshape([-1]) |
|
face_xys_to_erode = face_xys[~face_pixs] |
|
face_mask[face_xys_to_erode[...,0], face_xys_to_erode[...,1]] = False |
|
eye_mask = (~ face_mask) & eye_prior_reigon |
|
|
|
h_grid = np.mgrid[0:h, 0:w][0] |
|
eye_num_pixel_along_w_axis = eye_mask.sum(axis=0) |
|
eye_mask_along_w_axis = eye_num_pixel_along_w_axis != 0 |
|
|
|
tmp_h_grid = h_grid.copy() |
|
tmp_h_grid[~eye_mask] = 0 |
|
eye_mean_h_coord_along_w_axis = tmp_h_grid.sum(axis=0) / np.clip(eye_num_pixel_along_w_axis, a_min=1, a_max=h) |
|
tmp_h_grid = h_grid.copy() |
|
tmp_h_grid[~eye_mask] = 99999 |
|
eye_min_h_coord_along_w_axis = tmp_h_grid.min(axis=0) |
|
tmp_h_grid = h_grid.copy() |
|
tmp_h_grid[~eye_mask] = -99999 |
|
eye_max_h_coord_along_w_axis = tmp_h_grid.max(axis=0) |
|
|
|
eye_low_h_coord_along_w_axis = close_eye_percent * eye_mean_h_coord_along_w_axis + (1-close_eye_percent) * eye_min_h_coord_along_w_axis |
|
eye_high_h_coord_along_w_axis = close_eye_percent * eye_mean_h_coord_along_w_axis + (1-close_eye_percent) * eye_max_h_coord_along_w_axis |
|
|
|
tmp_h_grid = h_grid.copy() |
|
tmp_h_grid[~eye_mask] = 99999 |
|
upper_eye_blink_mask = tmp_h_grid <= eye_low_h_coord_along_w_axis |
|
tmp_h_grid = h_grid.copy() |
|
tmp_h_grid[~eye_mask] = -99999 |
|
lower_eye_blink_mask = tmp_h_grid >= eye_high_h_coord_along_w_axis |
|
eye_blink_mask = upper_eye_blink_mask | lower_eye_blink_mask |
|
|
|
face_xys = np.stack(np.nonzero(around_eye_face_mask)).transpose(1, 0) |
|
eye_blink_xys = np.stack(np.nonzero(eye_blink_mask)).transpose(1, 0) |
|
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(face_xys) |
|
distances, indices = nbrs.kneighbors(eye_blink_xys) |
|
bg_fg_xys = face_xys[indices[:, 0]] |
|
img[eye_blink_xys[:, 0], eye_blink_xys[:, 1], :] = img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :] |
|
return torch.tensor(img.astype(np.float32) / 127.5 - 1).permute(2,0,1) |
|
|
|
|
|
if __name__ == '__main__': |
|
import imageio |
|
import tqdm |
|
img = cv2.imread("assets/cano_secc.png") |
|
img = img / 127.5 - 1 |
|
img = torch.FloatTensor(img).permute(2, 0, 1) |
|
fps = 25 |
|
writer = imageio.get_writer('demo_blink.mp4', fps=fps) |
|
|
|
for i in tqdm.trange(33): |
|
blink_percent = 0.03 * i |
|
with Timer("Blink", True): |
|
out_img = blink_eye_for_secc(img, blink_percent) |
|
out_img = ((out_img.permute(1,2,0)+1)*127.5).int().numpy() |
|
writer.append_data(out_img) |
|
writer.close() |