|
import scipy |
|
from torch.nn import functional as F |
|
import torch |
|
from torch import nn |
|
import numpy as np |
|
from modules.commons.wavenet import WN |
|
from modules.tts.glow import utils |
|
|
|
|
|
class ActNorm(nn.Module): |
|
def __init__(self, channels, ddi=False, **kwargs): |
|
super().__init__() |
|
self.channels = channels |
|
self.initialized = not ddi |
|
|
|
self.logs = nn.Parameter(torch.zeros(1, channels, 1)) |
|
self.bias = nn.Parameter(torch.zeros(1, channels, 1)) |
|
|
|
def forward(self, x, x_mask=None, reverse=False, **kwargs): |
|
if x_mask is None: |
|
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype) |
|
x_len = torch.sum(x_mask, [1, 2]) |
|
if not self.initialized: |
|
self.initialize(x, x_mask) |
|
self.initialized = True |
|
|
|
if reverse: |
|
z = (x - self.bias) * torch.exp(-self.logs) * x_mask |
|
logdet = torch.sum(-self.logs) * x_len |
|
else: |
|
z = (self.bias + torch.exp(self.logs) * x) * x_mask |
|
logdet = torch.sum(self.logs) * x_len |
|
return z, logdet |
|
|
|
def store_inverse(self): |
|
pass |
|
|
|
def set_ddi(self, ddi): |
|
self.initialized = not ddi |
|
|
|
def initialize(self, x, x_mask): |
|
with torch.no_grad(): |
|
denom = torch.sum(x_mask, [0, 2]) |
|
m = torch.sum(x * x_mask, [0, 2]) / denom |
|
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom |
|
v = m_sq - (m ** 2) |
|
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6)) |
|
|
|
bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype) |
|
logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype) |
|
|
|
self.bias.data.copy_(bias_init) |
|
self.logs.data.copy_(logs_init) |
|
|
|
|
|
class InvConvNear(nn.Module): |
|
def __init__(self, channels, n_split=4, no_jacobian=False, lu=True, n_sqz=2, **kwargs): |
|
super().__init__() |
|
assert (n_split % 2 == 0) |
|
self.channels = channels |
|
self.n_split = n_split |
|
self.n_sqz = n_sqz |
|
self.no_jacobian = no_jacobian |
|
|
|
w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0] |
|
if torch.det(w_init) < 0: |
|
w_init[:, 0] = -1 * w_init[:, 0] |
|
self.lu = lu |
|
if lu: |
|
|
|
np_p, np_l, np_u = scipy.linalg.lu(w_init) |
|
np_s = np.diag(np_u) |
|
np_sign_s = np.sign(np_s) |
|
np_log_s = np.log(np.abs(np_s)) |
|
np_u = np.triu(np_u, k=1) |
|
l_mask = np.tril(np.ones(w_init.shape, dtype=float), -1) |
|
eye = np.eye(*w_init.shape, dtype=float) |
|
|
|
self.register_buffer('p', torch.Tensor(np_p.astype(float))) |
|
self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float))) |
|
self.l = nn.Parameter(torch.Tensor(np_l.astype(float)), requires_grad=True) |
|
self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float)), requires_grad=True) |
|
self.u = nn.Parameter(torch.Tensor(np_u.astype(float)), requires_grad=True) |
|
self.register_buffer('l_mask', torch.Tensor(l_mask)) |
|
self.register_buffer('eye', torch.Tensor(eye)) |
|
else: |
|
self.weight = nn.Parameter(w_init) |
|
|
|
def forward(self, x, x_mask=None, reverse=False, **kwargs): |
|
b, c, t = x.size() |
|
assert (c % self.n_split == 0) |
|
if x_mask is None: |
|
x_mask = 1 |
|
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t |
|
else: |
|
x_len = torch.sum(x_mask, [1, 2]) |
|
|
|
x = x.view(b, self.n_sqz, c // self.n_split, self.n_split // self.n_sqz, t) |
|
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c // self.n_split, t) |
|
|
|
if self.lu: |
|
self.weight, log_s = self._get_weight() |
|
logdet = log_s.sum() |
|
logdet = logdet * (c / self.n_split) * x_len |
|
else: |
|
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len |
|
|
|
if reverse: |
|
if hasattr(self, "weight_inv"): |
|
weight = self.weight_inv |
|
else: |
|
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) |
|
logdet = -logdet |
|
else: |
|
weight = self.weight |
|
if self.no_jacobian: |
|
logdet = 0 |
|
|
|
weight = weight.view(self.n_split, self.n_split, 1, 1) |
|
z = F.conv2d(x, weight) |
|
|
|
z = z.view(b, self.n_sqz, self.n_split // self.n_sqz, c // self.n_split, t) |
|
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask |
|
return z, logdet |
|
|
|
def _get_weight(self): |
|
l, log_s, u = self.l, self.log_s, self.u |
|
l = l * self.l_mask + self.eye |
|
u = u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(log_s)) |
|
weight = torch.matmul(self.p, torch.matmul(l, u)) |
|
return weight, log_s |
|
|
|
def store_inverse(self): |
|
weight, _ = self._get_weight() |
|
self.weight_inv = torch.inverse(weight.float()).to(next(self.parameters()).device) |
|
|
|
|
|
class InvConv(nn.Module): |
|
def __init__(self, channels, no_jacobian=False, lu=True, **kwargs): |
|
super().__init__() |
|
w_shape = [channels, channels] |
|
w_init = np.linalg.qr(np.random.randn(*w_shape))[0].astype(float) |
|
LU_decomposed = lu |
|
if not LU_decomposed: |
|
|
|
self.register_parameter("weight", nn.Parameter(torch.Tensor(w_init))) |
|
else: |
|
np_p, np_l, np_u = scipy.linalg.lu(w_init) |
|
np_s = np.diag(np_u) |
|
np_sign_s = np.sign(np_s) |
|
np_log_s = np.log(np.abs(np_s)) |
|
np_u = np.triu(np_u, k=1) |
|
l_mask = np.tril(np.ones(w_shape, dtype=float), -1) |
|
eye = np.eye(*w_shape, dtype=float) |
|
|
|
self.register_buffer('p', torch.Tensor(np_p.astype(float))) |
|
self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float))) |
|
self.l = nn.Parameter(torch.Tensor(np_l.astype(float))) |
|
self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float))) |
|
self.u = nn.Parameter(torch.Tensor(np_u.astype(float))) |
|
self.l_mask = torch.Tensor(l_mask) |
|
self.eye = torch.Tensor(eye) |
|
self.w_shape = w_shape |
|
self.LU = LU_decomposed |
|
self.weight = None |
|
|
|
def get_weight(self, device, reverse): |
|
w_shape = self.w_shape |
|
self.p = self.p.to(device) |
|
self.sign_s = self.sign_s.to(device) |
|
self.l_mask = self.l_mask.to(device) |
|
self.eye = self.eye.to(device) |
|
l = self.l * self.l_mask + self.eye |
|
u = self.u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(self.log_s)) |
|
dlogdet = self.log_s.sum() |
|
if not reverse: |
|
w = torch.matmul(self.p, torch.matmul(l, u)) |
|
else: |
|
l = torch.inverse(l.double()).float() |
|
u = torch.inverse(u.double()).float() |
|
w = torch.matmul(u, torch.matmul(l, self.p.inverse())) |
|
return w.view(w_shape[0], w_shape[1], 1), dlogdet |
|
|
|
def forward(self, x, x_mask=None, reverse=False, **kwargs): |
|
""" |
|
log-det = log|abs(|W|)| * pixels |
|
""" |
|
b, c, t = x.size() |
|
if x_mask is None: |
|
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t |
|
else: |
|
x_len = torch.sum(x_mask, [1, 2]) |
|
logdet = 0 |
|
if not reverse: |
|
weight, dlogdet = self.get_weight(x.device, reverse) |
|
z = F.conv1d(x, weight) |
|
if logdet is not None: |
|
logdet = logdet + dlogdet * x_len |
|
return z, logdet |
|
else: |
|
if self.weight is None: |
|
weight, dlogdet = self.get_weight(x.device, reverse) |
|
else: |
|
weight, dlogdet = self.weight, self.dlogdet |
|
z = F.conv1d(x, weight) |
|
if logdet is not None: |
|
logdet = logdet - dlogdet * x_len |
|
return z, logdet |
|
|
|
def store_inverse(self): |
|
self.weight, self.dlogdet = self.get_weight('cuda', reverse=True) |
|
|
|
|
|
class CouplingBlock(nn.Module): |
|
def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, n_layers, |
|
gin_channels=0, p_dropout=0, sigmoid_scale=False, wn=None): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
self.p_dropout = p_dropout |
|
self.sigmoid_scale = sigmoid_scale |
|
|
|
start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1) |
|
start = torch.nn.utils.weight_norm(start) |
|
self.start = start |
|
|
|
|
|
end = torch.nn.Conv1d(hidden_channels, in_channels, 1) |
|
end.weight.data.zero_() |
|
end.bias.data.zero_() |
|
self.end = end |
|
self.wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels, p_dropout) |
|
if wn is not None: |
|
self.wn.in_layers = wn.in_layers |
|
self.wn.res_skip_layers = wn.res_skip_layers |
|
|
|
def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): |
|
if x_mask is None: |
|
x_mask = 1 |
|
x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:] |
|
|
|
x = self.start(x_0) * x_mask |
|
x = self.wn(x, x_mask, g) |
|
out = self.end(x) |
|
|
|
z_0 = x_0 |
|
m = out[:, :self.in_channels // 2, :] |
|
logs = out[:, self.in_channels // 2:, :] |
|
if self.sigmoid_scale: |
|
logs = torch.log(1e-6 + torch.sigmoid(logs + 2)) |
|
if reverse: |
|
z_1 = (x_1 - m) * torch.exp(-logs) * x_mask |
|
logdet = torch.sum(-logs * x_mask, [1, 2]) |
|
else: |
|
z_1 = (m + torch.exp(logs) * x_1) * x_mask |
|
logdet = torch.sum(logs * x_mask, [1, 2]) |
|
z = torch.cat([z_0, z_1], 1) |
|
return z, logdet |
|
|
|
def store_inverse(self): |
|
self.wn.remove_weight_norm() |
|
|
|
|
|
class Glow(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_blocks, |
|
n_layers, |
|
p_dropout=0., |
|
n_split=4, |
|
n_sqz=2, |
|
sigmoid_scale=False, |
|
gin_channels=0, |
|
inv_conv_type='near', |
|
share_cond_layers=False, |
|
share_wn_layers=0, |
|
): |
|
super().__init__() |
|
|
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_blocks = n_blocks |
|
self.n_layers = n_layers |
|
self.p_dropout = p_dropout |
|
self.n_split = n_split |
|
self.n_sqz = n_sqz |
|
self.sigmoid_scale = sigmoid_scale |
|
self.gin_channels = gin_channels |
|
self.share_cond_layers = share_cond_layers |
|
if gin_channels != 0 and share_cond_layers: |
|
cond_layer = torch.nn.Conv1d(gin_channels * n_sqz, 2 * hidden_channels * n_layers, 1) |
|
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') |
|
wn = None |
|
self.flows = nn.ModuleList() |
|
for b in range(n_blocks): |
|
self.flows.append(ActNorm(channels=in_channels * n_sqz)) |
|
if inv_conv_type == 'near': |
|
self.flows.append(InvConvNear(channels=in_channels * n_sqz, n_split=n_split, n_sqz=n_sqz)) |
|
if inv_conv_type == 'invconv': |
|
self.flows.append(InvConv(channels=in_channels * n_sqz)) |
|
if share_wn_layers > 0: |
|
if b % share_wn_layers == 0: |
|
wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels * n_sqz, |
|
p_dropout, share_cond_layers) |
|
self.flows.append( |
|
CouplingBlock( |
|
in_channels * n_sqz, |
|
hidden_channels, |
|
kernel_size=kernel_size, |
|
dilation_rate=dilation_rate, |
|
n_layers=n_layers, |
|
gin_channels=gin_channels * n_sqz, |
|
p_dropout=p_dropout, |
|
sigmoid_scale=sigmoid_scale, |
|
wn=wn |
|
)) |
|
|
|
def forward(self, x, x_mask=None, g=None, reverse=False, return_hiddens=False): |
|
logdet_tot = 0 |
|
if not reverse: |
|
flows = self.flows |
|
else: |
|
flows = reversed(self.flows) |
|
if return_hiddens: |
|
hs = [] |
|
if self.n_sqz > 1: |
|
x, x_mask_ = utils.squeeze(x, x_mask, self.n_sqz) |
|
if g is not None: |
|
g, _ = utils.squeeze(g, x_mask, self.n_sqz) |
|
x_mask = x_mask_ |
|
if self.share_cond_layers and g is not None: |
|
g = self.cond_layer(g) |
|
for f in flows: |
|
x, logdet = f(x, x_mask, g=g, reverse=reverse) |
|
if return_hiddens: |
|
hs.append(x) |
|
logdet_tot += logdet |
|
if self.n_sqz > 1: |
|
x, x_mask = utils.unsqueeze(x, x_mask, self.n_sqz) |
|
if return_hiddens: |
|
return x, logdet_tot, hs |
|
return x, logdet_tot |
|
|
|
def store_inverse(self): |
|
def remove_weight_norm(m): |
|
try: |
|
nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(remove_weight_norm) |
|
for f in self.flows: |
|
f.store_inverse() |
|
|