|
import torch |
|
import torch.nn as nn |
|
from scipy.cluster.vq import kmeans2 |
|
from torch.nn import functional as F |
|
|
|
|
|
class VQEmbeddingEMA(nn.Module): |
|
def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, decay=0.999, epsilon=1e-5, |
|
print_vq_prob=False): |
|
super(VQEmbeddingEMA, self).__init__() |
|
self.commitment_cost = commitment_cost |
|
self.n_embeddings = n_embeddings |
|
self.decay = decay |
|
self.epsilon = epsilon |
|
self.print_vq_prob = print_vq_prob |
|
self.register_buffer('data_initialized', torch.zeros(1)) |
|
|
|
init_bound = 1 / 512 |
|
embedding = torch.Tensor(n_embeddings, embedding_dim) |
|
embedding.uniform_(-init_bound, init_bound) |
|
self.register_buffer("embedding", embedding) |
|
self.register_buffer("ema_count", torch.zeros(n_embeddings)) |
|
self.register_buffer("ema_weight", self.embedding.clone()) |
|
|
|
def encode(self, x): |
|
B, T, _ = x.shape |
|
M, D = self.embedding.size() |
|
x_flat = x.detach().reshape(-1, D) |
|
|
|
distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) + |
|
torch.sum(x_flat ** 2, dim=1, keepdim=True), |
|
x_flat, self.embedding.t(), |
|
alpha=-2.0, beta=1.0) |
|
indices = torch.argmin(distances.float(), dim=-1) |
|
quantized = F.embedding(indices, self.embedding) |
|
quantized = quantized.view_as(x) |
|
return x_flat, quantized, indices |
|
|
|
def forward(self, x): |
|
""" |
|
|
|
:param x: [B, T, D] |
|
:return: [B, T, D] |
|
""" |
|
B, T, _ = x.shape |
|
M, D = self.embedding.size() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x_flat, quantized, indices = self.encode(x) |
|
encodings = F.one_hot(indices, M).float() |
|
indices = indices.reshape(B, T) |
|
|
|
if self.training and self.data_initialized.item() != 0: |
|
self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0) |
|
|
|
n = torch.sum(self.ema_count) |
|
self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n |
|
|
|
dw = torch.matmul(encodings.t(), x_flat) |
|
self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw |
|
|
|
self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1) |
|
|
|
if self.training and self.data_initialized.item() == 0: |
|
self.data_initialized.fill_(1) |
|
|
|
e_latent_loss = F.mse_loss(x, quantized.detach(), reduction='none') |
|
nonpadding = (x.abs().sum(-1) > 0).float() |
|
e_latent_loss = (e_latent_loss.mean(-1) * nonpadding).sum() / nonpadding.sum() |
|
loss = self.commitment_cost * e_latent_loss |
|
|
|
quantized = x + (quantized - x).detach() |
|
|
|
avg_probs = torch.mean(encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) |
|
if self.print_vq_prob: |
|
print("| VQ code avg_probs: ", avg_probs) |
|
return quantized, loss, indices, perplexity |
|
|
|
|
|
class VQEmbedding(nn.Module): |
|
def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, lambda_kl=1.0): |
|
super(VQEmbedding, self).__init__() |
|
self.commitment_cost = commitment_cost |
|
self.lambda_kl = lambda_kl |
|
self.n_embeddings = n_embeddings |
|
embedding = torch.Tensor(n_embeddings, embedding_dim) |
|
self.register_buffer("embedding", embedding) |
|
self.register_buffer('data_initialized', torch.zeros(1)) |
|
|
|
def encode(self, x): |
|
B, T, _ = x.shape |
|
M, D = self.embedding.size() |
|
x_flat = x.detach().reshape(-1, D) |
|
|
|
distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) + |
|
torch.sum(x_flat ** 2, dim=1, keepdim=True), |
|
x_flat, self.embedding.t(), |
|
alpha=-2.0, beta=1.0) |
|
indices = torch.argmin(distances.float(), dim=-1) |
|
quantized = F.embedding(indices, self.embedding) |
|
quantized = quantized.view_as(x) |
|
return x_flat, quantized, indices |
|
|
|
def forward(self, x): |
|
""" |
|
|
|
:param x: [B, T, D] |
|
:return: [B, T, D] |
|
""" |
|
B, T, _ = x.shape |
|
M, D = self.embedding.size() |
|
|
|
x_flat, quantized, indices = self.encode(x) |
|
encodings = F.one_hot(indices, M).float() |
|
indices = indices.reshape(B, T) |
|
|
|
|
|
if self.training and self.data_initialized.item() == 0: |
|
print('| running kmeans in VQVAE') |
|
rp = torch.randperm(x_flat.size(0)) |
|
kd = kmeans2(x_flat[rp].data.cpu().numpy(), self.n_embeddings, minit='points') |
|
self.embedding.copy_(torch.from_numpy(kd[0])) |
|
self.data_initialized.fill_(1) |
|
|
|
x_flat, quantized, indices = self.encode(x) |
|
encodings = F.one_hot(indices, M).float() |
|
indices = indices.reshape(B, T) |
|
|
|
|
|
loss = self.commitment_cost * (x.detach() - quantized).pow(2).mean() + \ |
|
(quantized - x.detach()).pow(2).mean() |
|
loss *= self.lambda_kl |
|
|
|
quantized = x + (quantized - x).detach() |
|
|
|
avg_probs = torch.mean(encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) |
|
return quantized, loss, indices, perplexity |
|
|