|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Frechet Inception Distance (FID) from the paper |
|
"GANs trained by a two time-scale update rule converge to a local Nash |
|
equilibrium". Matches the original implementation by Heusel et al. at |
|
https://github.com/bioinf-jku/TTUR/blob/master/fid.py""" |
|
|
|
import numpy as np |
|
import scipy.linalg |
|
from . import metric_utils |
|
|
|
|
|
|
|
def compute_fid(opts, max_real, num_gen): |
|
|
|
|
|
detector_url = 'file:///home/tiger/nfs/myenv/cache/useful_ckpts/inception-2015-12-05.pkl' |
|
detector_kwargs = dict(return_features=True) |
|
|
|
mu_real, sigma_real = metric_utils.compute_feature_stats_for_dataset( |
|
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs, |
|
rel_lo=0, rel_hi=0, capture_mean_cov=True, max_items=max_real).get_mean_cov() |
|
|
|
mu_gen, sigma_gen = metric_utils.compute_feature_stats_for_generator( |
|
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs, |
|
rel_lo=0, rel_hi=1, capture_mean_cov=True, max_items=num_gen).get_mean_cov() |
|
|
|
if opts.rank != 0: |
|
return float('nan') |
|
|
|
m = np.square(mu_gen - mu_real).sum() |
|
s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) |
|
fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2)) |
|
return float(fid) |
|
|
|
|
|
|
|
|