ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
import os
os.environ["OMP_NUM_THREADS"] = "1"
import random
import glob
import cv2
import tqdm
import numpy as np
from typing import Union
from utils.commons.tensor_utils import convert_to_np
from utils.commons.os_utils import multiprocess_glob
import pickle
import traceback
import multiprocessing
from utils.commons.multiprocess_utils import multiprocess_run_tqdm
from scipy.ndimage import binary_erosion, binary_dilation
from sklearn.neighbors import NearestNeighbors
from mediapipe.tasks.python import vision
from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter, encode_segmap_mask_to_image, decode_segmap_mask_from_image, job_cal_seg_map_for_image
seg_model = None
segmenter = None
mat_model = None
lama_model = None
lama_config = None
from data_gen.utils.process_video.split_video_to_imgs import extract_img_job
BG_NAME_MAP = {
"knn": "",
}
FRAME_SELECT_INTERVAL = 5
SIM_METHOD = "mse"
SIM_THRESHOLD = 3
def save_file(name, content):
with open(name, "wb") as f:
pickle.dump(content, f)
def load_file(name):
with open(name, "rb") as f:
content = pickle.load(f)
return content
def save_rgb_alpha_image_to_path(img, alpha, img_path):
try: os.makedirs(os.path.dirname(img_path), exist_ok=True)
except: pass
cv2.imwrite(img_path, np.concatenate([cv2.cvtColor(img, cv2.COLOR_RGB2BGR), alpha], axis=-1))
def save_rgb_image_to_path(img, img_path):
try: os.makedirs(os.path.dirname(img_path), exist_ok=True)
except: pass
cv2.imwrite(img_path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
def load_rgb_image_to_path(img_path):
return cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
def image_similarity(x: np.ndarray, y: np.ndarray, method="mse"):
if method == "mse":
return np.mean((x - y) ** 2)
else:
raise NotImplementedError
def extract_background(img_lst, segmap_mask_lst=None, method="knn", device='cpu', mix_bg=True):
"""
img_lst: list of rgb ndarray
method: "knn"
"""
global segmenter
global seg_model
global mat_model
global lama_model
global lama_config
assert len(img_lst) > 0
if segmap_mask_lst is not None:
assert len(segmap_mask_lst) == len(img_lst)
else:
del segmenter
del seg_model
seg_model = MediapipeSegmenter()
segmenter = vision.ImageSegmenter.create_from_options(seg_model.video_options)
def get_segmap_mask(img_lst, segmap_mask_lst, index):
if segmap_mask_lst is not None:
segmap = refresh_segment_mask(segmap_mask_lst[index])
else:
segmap = seg_model._cal_seg_map(refresh_image(img_lst[index]), segmenter=segmenter)
return segmap
if method == "knn":
num_frames = len(img_lst)
if num_frames < 100:
FRAME_SELECT_INTERVAL = 5
elif num_frames < 10000:
FRAME_SELECT_INTERVAL = 20
else:
FRAME_SELECT_INTERVAL = num_frames // 500
img_lst = img_lst[::FRAME_SELECT_INTERVAL] if num_frames > FRAME_SELECT_INTERVAL else img_lst[0:1]
if segmap_mask_lst is not None:
segmap_mask_lst = segmap_mask_lst[::FRAME_SELECT_INTERVAL] if num_frames > FRAME_SELECT_INTERVAL else segmap_mask_lst[0:1]
assert len(img_lst) == len(segmap_mask_lst)
# get H/W
h, w = refresh_image(img_lst[0]).shape[:2]
# nearest neighbors
all_xys = np.mgrid[0:h, 0:w].reshape(2, -1).transpose() # [512*512, 2] coordinate grid
distss = []
for idx, img in tqdm.tqdm(enumerate(img_lst), desc='combining backgrounds...', total=len(img_lst)):
segmap = get_segmap_mask(img_lst=img_lst, segmap_mask_lst=segmap_mask_lst, index=idx)
bg = (segmap[0]).astype(bool) # [h,w] bool mask
fg_xys = np.stack(np.nonzero(~bg)).transpose(1, 0) # [N_nonbg,2] coordinate of non-bg pixels
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
dists, _ = nbrs.kneighbors(all_xys) # [512*512, 1] distance to nearest non-bg pixel
distss.append(dists)
distss = np.stack(distss) # [B, 512*512, 1]
max_dist = np.max(distss, 0) # [512*512, 1]
max_id = np.argmax(distss, 0) # id of frame
bc_pixs = max_dist > 10 # 在各个frame有一个出现过是bg的pixel,bg标准是离最近的non-bg pixel距离大于10
bc_pixs_id = np.nonzero(bc_pixs)
bc_ids = max_id[bc_pixs]
# TODO: maybe we should reimplement here to avoid memory costs?
# though there is upper limits of images here
num_pixs = distss.shape[1]
bg_img = np.zeros((h*w, 3), dtype=np.uint8)
img_lst = [refresh_image(img) for img in img_lst]
imgs = np.stack(img_lst).reshape(-1, num_pixs, 3)
bg_img[bc_pixs_id, :] = imgs[bc_ids, bc_pixs_id, :] # 对那些铁bg的pixel,直接去对应的image里面采样
bg_img = bg_img.reshape(h, w, 3)
max_dist = max_dist.reshape(h, w)
bc_pixs = max_dist > 10 # 5
bg_xys = np.stack(np.nonzero(~bc_pixs)).transpose()
fg_xys = np.stack(np.nonzero(bc_pixs)).transpose()
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
distances, indices = nbrs.kneighbors(bg_xys) # 对non-bg img,用KNN找最近的bg pixel
bg_fg_xys = fg_xys[indices[:, 0]]
bg_img[bg_xys[:, 0], bg_xys[:, 1], :] = bg_img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :]
else:
raise NotImplementedError # deperated
return bg_img
def inpaint_torso_job(gt_img, segmap):
bg_part = (segmap[0]).astype(bool)
head_part = (segmap[1] + segmap[3] + segmap[5]).astype(bool)
neck_part = (segmap[2]).astype(bool)
torso_part = (segmap[4]).astype(bool)
img = gt_img.copy()
img[head_part] = 0
# torso part "vertical" in-painting...
L = 8 + 1
torso_coords = np.stack(np.nonzero(torso_part), axis=-1) # [M, 2]
# lexsort: sort 2D coords first by y then by x,
# ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes
inds = np.lexsort((torso_coords[:, 0], torso_coords[:, 1]))
torso_coords = torso_coords[inds]
# choose the top pixel for each column
u, uid, ucnt = np.unique(torso_coords[:, 1], return_index=True, return_counts=True)
top_torso_coords = torso_coords[uid] # [m, 2]
# only keep top-is-head pixels
top_torso_coords_up = top_torso_coords.copy() - np.array([1, 0]) # [N, 2]
mask = head_part[tuple(top_torso_coords_up.T)]
if mask.any():
top_torso_coords = top_torso_coords[mask]
# get the color
top_torso_colors = gt_img[tuple(top_torso_coords.T)] # [m, 3]
# construct inpaint coords (vertically up, or minus in x)
inpaint_torso_coords = top_torso_coords[None].repeat(L, 0) # [L, m, 2]
inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2]
inpaint_torso_coords += inpaint_offsets
inpaint_torso_coords = inpaint_torso_coords.reshape(-1, 2) # [Lm, 2]
inpaint_torso_colors = top_torso_colors[None].repeat(L, 0) # [L, m, 3]
darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1]
inpaint_torso_colors = (inpaint_torso_colors * darken_scaler).reshape(-1, 3) # [Lm, 3]
# set color
img[tuple(inpaint_torso_coords.T)] = inpaint_torso_colors
inpaint_torso_mask = np.zeros_like(img[..., 0]).astype(bool)
inpaint_torso_mask[tuple(inpaint_torso_coords.T)] = True
else:
inpaint_torso_mask = None
# neck part "vertical" in-painting...
push_down = 4
L = 48 + push_down + 1
neck_part = binary_dilation(neck_part, structure=np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=bool), iterations=3)
neck_coords = np.stack(np.nonzero(neck_part), axis=-1) # [M, 2]
# lexsort: sort 2D coords first by y then by x,
# ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes
inds = np.lexsort((neck_coords[:, 0], neck_coords[:, 1]))
neck_coords = neck_coords[inds]
# choose the top pixel for each column
u, uid, ucnt = np.unique(neck_coords[:, 1], return_index=True, return_counts=True)
top_neck_coords = neck_coords[uid] # [m, 2]
# only keep top-is-head pixels
top_neck_coords_up = top_neck_coords.copy() - np.array([1, 0])
mask = head_part[tuple(top_neck_coords_up.T)]
top_neck_coords = top_neck_coords[mask]
# push these top down for 4 pixels to make the neck inpainting more natural...
offset_down = np.minimum(ucnt[mask] - 1, push_down)
top_neck_coords += np.stack([offset_down, np.zeros_like(offset_down)], axis=-1)
# get the color
top_neck_colors = gt_img[tuple(top_neck_coords.T)] # [m, 3]
# construct inpaint coords (vertically up, or minus in x)
inpaint_neck_coords = top_neck_coords[None].repeat(L, 0) # [L, m, 2]
inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2]
inpaint_neck_coords += inpaint_offsets
inpaint_neck_coords = inpaint_neck_coords.reshape(-1, 2) # [Lm, 2]
inpaint_neck_colors = top_neck_colors[None].repeat(L, 0) # [L, m, 3]
darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1]
inpaint_neck_colors = (inpaint_neck_colors * darken_scaler).reshape(-1, 3) # [Lm, 3]
# set color
img[tuple(inpaint_neck_coords.T)] = inpaint_neck_colors
# apply blurring to the inpaint area to avoid vertical-line artifects...
inpaint_mask = np.zeros_like(img[..., 0]).astype(bool)
inpaint_mask[tuple(inpaint_neck_coords.T)] = True
blur_img = img.copy()
blur_img = cv2.GaussianBlur(blur_img, (5, 5), cv2.BORDER_DEFAULT)
img[inpaint_mask] = blur_img[inpaint_mask]
# set mask
torso_img_mask = (neck_part | torso_part | inpaint_mask)
torso_with_bg_img_mask = (bg_part | neck_part | torso_part | inpaint_mask)
if inpaint_torso_mask is not None:
torso_img_mask = torso_img_mask | inpaint_torso_mask
torso_with_bg_img_mask = torso_with_bg_img_mask | inpaint_torso_mask
torso_img = img.copy()
torso_img[~torso_img_mask] = 0
torso_with_bg_img = img.copy()
torso_img[~torso_with_bg_img_mask] = 0
return torso_img, torso_img_mask, torso_with_bg_img, torso_with_bg_img_mask
def load_segment_mask_from_file(filename: str):
encoded_segmap = load_rgb_image_to_path(filename)
segmap_mask = decode_segmap_mask_from_image(encoded_segmap)
return segmap_mask
# load segment mask to memory if not loaded yet
def refresh_segment_mask(segmap_mask: Union[str, np.ndarray]):
if isinstance(segmap_mask, str):
segmap_mask = load_segment_mask_from_file(segmap_mask)
return segmap_mask
# load segment mask to memory if not loaded yet
def refresh_image(image: Union[str, np.ndarray]):
if isinstance(image, str):
image = load_rgb_image_to_path(image)
return image
def generate_segment_imgs_job(img_name, segmap, img):
out_img_name = segmap_name = img_name.replace("/gt_imgs/", "/segmaps/").replace(".jpg", ".png") # 存成jpg的话,pixel value会有误差
try: os.makedirs(os.path.dirname(out_img_name), exist_ok=True)
except: pass
encoded_segmap = encode_segmap_mask_to_image(segmap)
save_rgb_image_to_path(encoded_segmap, out_img_name)
for mode in ['head', 'torso', 'person', 'bg']:
out_img, mask = seg_model._seg_out_img_with_segmap(img, segmap, mode=mode)
img_alpha = 255 * np.ones((img.shape[0], img.shape[1], 1), dtype=np.uint8) # alpha
mask = mask[0][..., None]
img_alpha[~mask] = 0
out_img_name = img_name.replace("/gt_imgs/", f"/{mode}_imgs/").replace(".jpg", ".png")
save_rgb_alpha_image_to_path(out_img, img_alpha, out_img_name)
inpaint_torso_img, inpaint_torso_img_mask, inpaint_torso_with_bg_img, inpaint_torso_with_bg_img_mask = inpaint_torso_job(img, segmap)
img_alpha = 255 * np.ones((img.shape[0], img.shape[1], 1), dtype=np.uint8) # alpha
img_alpha[~inpaint_torso_img_mask[..., None]] = 0
out_img_name = img_name.replace("/gt_imgs/", f"/inpaint_torso_imgs/").replace(".jpg", ".png")
save_rgb_alpha_image_to_path(inpaint_torso_img, img_alpha, out_img_name)
return segmap_name
def segment_and_generate_for_image_job(img_name, img, segmenter_options=None, segmenter=None, store_in_memory=False):
img = refresh_image(img)
segmap_mask, segmap_image = job_cal_seg_map_for_image(img, segmenter_options=segmenter_options, segmenter=segmenter)
segmap_name = generate_segment_imgs_job(img_name=img_name, segmap=segmap_mask, img=img)
if store_in_memory:
return segmap_mask
else:
return segmap_name
def extract_segment_job(
video_name,
nerf=False,
background_method='knn',
device="cpu",
total_gpus=0,
mix_bg=True,
store_in_memory=False, # set to True to speed up a bit of preprocess, but leads to HUGE memory costs (100GB for 5-min video)
force_single_process=False, # turn this on if you find multi-process does not work on your environment
):
global segmenter
global seg_model
del segmenter
del seg_model
seg_model = MediapipeSegmenter()
segmenter = vision.ImageSegmenter.create_from_options(seg_model.options)
# nerf means that we extract only one video, so can enable multi-process acceleration
multiprocess_enable = nerf and not force_single_process
try:
if "cuda" in device:
# determine which cuda index from subprocess id
pname = multiprocessing.current_process().name
pid = int(pname.rsplit("-", 1)[-1]) - 1
cuda_id = pid % total_gpus
device = f"cuda:{cuda_id}"
if nerf: # single video
raw_img_dir = video_name.replace(".mp4", "/gt_imgs/").replace("/raw/","/processed/")
else: # whole dataset
raw_img_dir = video_name.replace(".mp4", "").replace("/video/", "/gt_imgs/")
if not os.path.exists(raw_img_dir):
extract_img_job(video_name, raw_img_dir) # use ffmpeg to split video into imgs
img_names = glob.glob(os.path.join(raw_img_dir, "*.jpg"))
img_lst = []
for img_name in img_names:
if store_in_memory:
img = load_rgb_image_to_path(img_name)
else:
img = img_name
img_lst.append(img)
print("| Extracting Segmaps && Saving...")
args = []
segmap_mask_lst = []
# preparing parameters for segment
for i in range(len(img_lst)):
img_name = img_names[i]
img = img_lst[i]
if multiprocess_enable: # create seg_model in subprocesses here
options = seg_model.options
segmenter_arg = None
else: # use seg_model of this process
options = None
segmenter_arg = segmenter
arg = (img_name, img, options, segmenter_arg, store_in_memory)
args.append(arg)
if multiprocess_enable:
for (_, res) in multiprocess_run_tqdm(segment_and_generate_for_image_job, args=args, num_workers=16, desc='generating segment images in multi-processes...'):
segmap_mask = res
segmap_mask_lst.append(segmap_mask)
else:
for index in tqdm.tqdm(range(len(img_lst)), desc="generating segment images in single-process..."):
segmap_mask = segment_and_generate_for_image_job(*args[index])
segmap_mask_lst.append(segmap_mask)
print("| Extracted Segmaps Done.")
print("| Extracting background...")
bg_prefix_name = f"bg{BG_NAME_MAP[background_method]}"
bg_img = extract_background(img_lst, segmap_mask_lst, method=background_method, device=device, mix_bg=mix_bg)
if nerf:
out_img_name = video_name.replace("/raw/", "/processed/").replace(".mp4", f"/{bg_prefix_name}.jpg")
else:
out_img_name = video_name.replace("/video/", f"/{bg_prefix_name}_img/").replace(".mp4", ".jpg")
save_rgb_image_to_path(bg_img, out_img_name)
print("| Extracted background done.")
print("| Extracting com_imgs...")
com_prefix_name = f"com{BG_NAME_MAP[background_method]}"
for i in tqdm.trange(len(img_names), desc='extracting com_imgs'):
img_name = img_names[i]
com_img = refresh_image(img_lst[i]).copy()
segmap = refresh_segment_mask(segmap_mask_lst[i])
bg_part = segmap[0].astype(bool)[..., None].repeat(3,axis=-1)
com_img[bg_part] = bg_img[bg_part]
out_img_name = img_name.replace("/gt_imgs/", f"/{com_prefix_name}_imgs/")
save_rgb_image_to_path(com_img, out_img_name)
print("| Extracted com_imgs done.")
return 0
except Exception as e:
print(str(type(e)), e)
traceback.print_exc(e)
return 1
def out_exist_job(vid_name, background_method='knn'):
com_prefix_name = f"com{BG_NAME_MAP[background_method]}"
img_dir = vid_name.replace("/video/", "/gt_imgs/").replace(".mp4", "")
out_dir1 = img_dir.replace("/gt_imgs/", "/head_imgs/")
out_dir2 = img_dir.replace("/gt_imgs/", f"/{com_prefix_name}_imgs/")
if os.path.exists(img_dir) and os.path.exists(out_dir1) and os.path.exists(out_dir1) and os.path.exists(out_dir2) :
num_frames = len(os.listdir(img_dir))
if len(os.listdir(out_dir1)) == num_frames and len(os.listdir(out_dir2)) == num_frames:
return None
else:
return vid_name
else:
return vid_name
def get_todo_vid_names(vid_names, background_method='knn'):
if len(vid_names) == 1: # nerf
return vid_names
todo_vid_names = []
fn_args = [(vid_name, background_method) for vid_name in vid_names]
for i, res in multiprocess_run_tqdm(out_exist_job, fn_args, num_workers=16, desc="checking todo videos..."):
if res is not None:
todo_vid_names.append(res)
return todo_vid_names
if __name__ == '__main__':
import argparse, glob, tqdm, random
parser = argparse.ArgumentParser()
parser.add_argument("--vid_dir", default='/home/tiger/datasets/raw/TH1KH_512/video')
parser.add_argument("--ds_name", default='TH1KH_512')
parser.add_argument("--num_workers", default=48, type=int)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--process_id", default=0, type=int)
parser.add_argument("--total_process", default=1, type=int)
parser.add_argument("--reset", action='store_true')
parser.add_argument("--load_names", action="store_true")
parser.add_argument("--background_method", choices=['knn', 'mat', 'ddnm', 'lama'], type=str, default='knn')
parser.add_argument("--total_gpus", default=0, type=int) # zero gpus means utilizing cpu
parser.add_argument("--no_mix_bg", action="store_true")
parser.add_argument("--store_in_memory", action="store_true") # set to True to speed up preprocess, but leads to high memory costs
parser.add_argument("--force_single_process", action="store_true") # turn this on if you find multi-process does not work on your environment
args = parser.parse_args()
vid_dir = args.vid_dir
ds_name = args.ds_name
load_names = args.load_names
background_method = args.background_method
total_gpus = args.total_gpus
mix_bg = not args.no_mix_bg
store_in_memory = args.store_in_memory
force_single_process = args.force_single_process
devices = os.environ.get('CUDA_VISIBLE_DEVICES', '').split(",")
for d in devices[:total_gpus]:
os.system(f'pkill -f "voidgpu{d}"')
if ds_name.lower() == 'nerf': # 处理单个视频
vid_names = [vid_dir]
out_names = [video_name.replace("/raw/", "/processed/").replace(".mp4","_lms.npy") for video_name in vid_names]
else: # 处理整个数据集
if ds_name in ['lrs3_trainval']:
vid_name_pattern = os.path.join(vid_dir, "*/*.mp4")
elif ds_name in ['TH1KH_512', 'CelebV-HQ']:
vid_name_pattern = os.path.join(vid_dir, "*.mp4")
elif ds_name in ['lrs2', 'lrs3', 'voxceleb2']:
vid_name_pattern = os.path.join(vid_dir, "*/*/*.mp4")
elif ds_name in ["RAVDESS", 'VFHQ']:
vid_name_pattern = os.path.join(vid_dir, "*/*/*/*.mp4")
else:
raise NotImplementedError()
vid_names_path = os.path.join(vid_dir, "vid_names.pkl")
if os.path.exists(vid_names_path) and load_names:
print(f"loading vid names from {vid_names_path}")
vid_names = load_file(vid_names_path)
else:
vid_names = multiprocess_glob(vid_name_pattern)
vid_names = sorted(vid_names)
print(f"saving vid names to {vid_names_path}")
save_file(vid_names_path, vid_names)
vid_names = sorted(vid_names)
random.seed(args.seed)
random.shuffle(vid_names)
process_id = args.process_id
total_process = args.total_process
if total_process > 1:
assert process_id <= total_process -1
num_samples_per_process = len(vid_names) // total_process
if process_id == total_process:
vid_names = vid_names[process_id * num_samples_per_process : ]
else:
vid_names = vid_names[process_id * num_samples_per_process : (process_id+1) * num_samples_per_process]
if not args.reset:
vid_names = get_todo_vid_names(vid_names, background_method)
print(f"todo videos number: {len(vid_names)}")
device = "cuda" if total_gpus > 0 else "cpu"
extract_job = extract_segment_job
fn_args = [(vid_name, ds_name=='nerf', background_method, device, total_gpus, mix_bg, store_in_memory, force_single_process) for i, vid_name in enumerate(vid_names)]
if ds_name == 'nerf': # 处理单个视频
extract_job(*fn_args[0])
else:
for vid_name in multiprocess_run_tqdm(extract_job, fn_args, desc=f"Root process {args.process_id}: segment images", num_workers=args.num_workers):
pass