|
import torch.nn as nn |
|
|
|
|
|
def initialize_decoder(module): |
|
for m in module.modules(): |
|
|
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_uniform_(m.weight, mode="fan_in", nonlinearity="relu") |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
elif isinstance(m, nn.Linear): |
|
nn.init.xavier_uniform_(m.weight) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
def initialize_head(module): |
|
for m in module.modules(): |
|
if isinstance(m, (nn.Linear, nn.Conv2d)): |
|
nn.init.xavier_uniform_(m.weight) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|