|
import torch |
|
from torch import nn |
|
|
|
from typing import Optional |
|
|
|
from modules.img2plane.deeplabv3.encoders import get_encoder |
|
from modules.img2plane.deeplabv3.base import initialization as init |
|
|
|
|
|
from .my_decoder import DeepLabV3Decoder |
|
|
|
|
|
class DeepLabV3(nn.Module): |
|
"""DeepLabV3_ implementation from "Rethinking Atrous Convolution for Semantic Image Segmentation" |
|
|
|
Args: |
|
encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone) |
|
to extract features of different spatial resolution |
|
encoder_depth: A number of stages used in encoder in range [3, 5]. Each stage generate features |
|
two times smaller in spatial dimensions than previous one (e.g. for depth 0 we will have features |
|
with shapes [(N, C, H, W),], for depth 1 - [(N, C, H, W), (N, C, H // 2, W // 2)] and so on). |
|
Default is 5 |
|
encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and |
|
other pretrained weights (see table with available weights for each encoder_name) |
|
decoder_channels: A number of convolution filters in ASPP module. Default is 256 |
|
in_channels: A number of input channels for the model, default is 3 (RGB images) |
|
classes: A number of classes for output mask (or you can think as a number of channels of output mask) |
|
activation: An activation function to apply after the final convolution layer. |
|
Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, |
|
**callable** and **None**. |
|
Default is **None** |
|
upsampling: Final upsampling factor. Default is 8 to preserve input-output spatial shape identity |
|
aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build |
|
on top of encoder if **aux_params** is not **None** (default). Supported params: |
|
- classes (int): A number of classes |
|
- pooling (str): One of "max", "avg". Default is "avg" |
|
- dropout (float): Dropout factor in [0, 1) |
|
- activation (str): An activation function to apply "sigmoid"/"softmax" |
|
(could be **None** to return logits) |
|
Returns: |
|
``torch.nn.Module``: **DeepLabV3** |
|
|
|
.. _DeeplabV3: |
|
https://arxiv.org/abs/1706.05587 |
|
|
|
""" |
|
|
|
def initialize(self): |
|
init.initialize_decoder(self.decoder) |
|
|
|
def __init__( |
|
self, |
|
encoder_name: str = "resnet34", |
|
encoder_depth: int = 5, |
|
encoder_weights: Optional[str] = "imagenet", |
|
decoder_channels: int = 256, |
|
in_channels: int = 5, |
|
): |
|
super().__init__() |
|
|
|
self.encoder = get_encoder( |
|
encoder_name, |
|
in_channels=in_channels, |
|
depth=encoder_depth, |
|
weights=encoder_weights, |
|
output_stride=8, |
|
) |
|
|
|
self.decoder = DeepLabV3Decoder( |
|
in_channels=self.encoder.out_channels[-1], |
|
out_channels=decoder_channels, |
|
) |
|
|
|
def check_input_shape(self, x): |
|
|
|
h, w = x.shape[-2:] |
|
output_stride = self.encoder.output_stride |
|
if h % output_stride != 0 or w % output_stride != 0: |
|
new_h = (h // output_stride + 1) * output_stride if h % output_stride != 0 else h |
|
new_w = (w // output_stride + 1) * output_stride if w % output_stride != 0 else w |
|
raise RuntimeError( |
|
f"Wrong input shape height={h}, width={w}. Expected image height and width " |
|
f"divisible by {output_stride}. Consider pad your images to shape ({new_h}, {new_w})." |
|
) |
|
|
|
def forward(self, x): |
|
"""Sequentially pass `x` trough model`s encoder, decoder and heads""" |
|
|
|
self.check_input_shape(x) |
|
|
|
features = self.encoder(x) |
|
decoder_output = self.decoder(*features) |
|
|
|
return decoder_output |
|
|
|
@torch.no_grad() |
|
def predict(self, x): |
|
"""Inference method. Switch model to `eval` mode, call `.forward(x)` with `torch.no_grad()` |
|
|
|
Args: |
|
x: 4D torch tensor with shape (batch_size, channels, height, width) |
|
|
|
Return: |
|
prediction: 4D torch tensor with shape (batch_size, classes, height, width) |
|
|
|
""" |
|
if self.training: |
|
self.eval() |
|
|
|
x = self.forward(x) |
|
|
|
return x |
|
|
|
|