File size: 2,066 Bytes
f5d74b2
 
 
 
 
 
 
 
 
2ea336e
 
f5d74b2
f3dab40
2ea336e
 
 
 
 
 
 
 
 
 
 
 
 
f3dab40
f5d74b2
 
 
 
 
f3dab40
f5d74b2
 
2ea336e
f3dab40
 
f5d74b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
082da27
f5d74b2
 
 
f3dab40
 
f5d74b2
082da27
 
f5d74b2
 
2ea336e
 
 
 
f3dab40
 
 
 
 
2ea336e
 
f5d74b2
 
 
2ea336e
f5d74b2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- hi
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: WhpTiny-hi-v2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: hi
      split: test
      args: hi
    metrics:
    - name: Wer
      type: wer
      value: 43.666169895678095
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# WhpTiny-hi-v2

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0825
- Wer: 43.6662

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1627        | 7.01  | 1000 | 0.5714          | 40.9378 |
| 0.0275        | 14.02 | 2000 | 0.7620          | 42.5943 |
| 0.0032        | 22.0  | 3000 | 0.9561          | 43.0443 |
| 0.0012        | 29.01 | 4000 | 1.0517          | 43.4426 |
| 0.0008        | 36.02 | 5000 | 1.0825          | 43.6662 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.10.0
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2