File size: 2,066 Bytes
f5d74b2 2ea336e f5d74b2 f3dab40 2ea336e f3dab40 f5d74b2 f3dab40 f5d74b2 2ea336e f3dab40 f5d74b2 082da27 f5d74b2 f3dab40 f5d74b2 082da27 f5d74b2 2ea336e f3dab40 2ea336e f5d74b2 2ea336e f5d74b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language:
- hi
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: WhpTiny-hi-v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: test
args: hi
metrics:
- name: Wer
type: wer
value: 43.666169895678095
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# WhpTiny-hi-v2
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0825
- Wer: 43.6662
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1627 | 7.01 | 1000 | 0.5714 | 40.9378 |
| 0.0275 | 14.02 | 2000 | 0.7620 | 42.5943 |
| 0.0032 | 22.0 | 3000 | 0.9561 | 43.0443 |
| 0.0012 | 29.01 | 4000 | 1.0517 | 43.4426 |
| 0.0008 | 36.02 | 5000 | 1.0825 | 43.6662 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.10.0
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|