finalProject

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0411
  • Accuracy: 0.9890
  • F1 Score: 0.9892
  • Precision: 0.9894
  • Sensitivity: 0.9891
  • Specificity: 0.9972

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score Precision Sensitivity Specificity
0.3384 1.0 30 0.2387 0.9144 0.9163 0.9197 0.9146 0.9781
0.1608 2.0 60 0.1635 0.9466 0.9476 0.9485 0.9474 0.9865
0.0953 3.0 90 0.0915 0.9698 0.9703 0.9706 0.9706 0.9924
0.0573 4.0 120 0.1125 0.9607 0.9617 0.9634 0.9621 0.9901
0.0335 5.0 150 0.0536 0.9827 0.9831 0.9837 0.9826 0.9957
0.0185 6.0 180 0.0543 0.9827 0.9830 0.9837 0.9825 0.9957
0.0226 7.0 210 0.0478 0.9859 0.9861 0.9866 0.9856 0.9965
0.0131 8.0 240 0.0468 0.9843 0.9846 0.9847 0.9846 0.9961
0.0087 9.0 270 0.0411 0.9890 0.9892 0.9894 0.9891 0.9972
0.0043 10.0 300 0.0376 0.9886 0.9888 0.9890 0.9887 0.9971

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.0
  • Tokenizers 0.13.3
Downloads last month
30
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using amjadfqs/finalProject 1

Evaluation results