amjadfqs commited on
Commit
a8ad2b2
·
1 Parent(s): ebd004b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ model-index:
11
+ - name: finalProject
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9886095836606441
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9890037194336745
29
+ ---
30
+
31
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
+ should probably proofread and complete it, then remove this comment. -->
33
+
34
+ # finalProject
35
+
36
+ This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
37
+ It achieves the following results on the evaluation set:
38
+ - Loss: 0.0376
39
+ - Accuracy: 0.9886
40
+ - F1 Score: 0.9888
41
+ - Precision: 0.9890
42
+ - Sensitivity: 0.9887
43
+ - Specificity: 0.9971
44
+
45
+ ## Model description
46
+
47
+ More information needed
48
+
49
+ ## Intended uses & limitations
50
+
51
+ More information needed
52
+
53
+ ## Training and evaluation data
54
+
55
+ More information needed
56
+
57
+ ## Training procedure
58
+
59
+ ### Training hyperparameters
60
+
61
+ The following hyperparameters were used during training:
62
+ - learning_rate: 0.0001
63
+ - train_batch_size: 64
64
+ - eval_batch_size: 64
65
+ - seed: 42
66
+ - gradient_accumulation_steps: 4
67
+ - total_train_batch_size: 256
68
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
69
+ - lr_scheduler_type: linear
70
+ - lr_scheduler_warmup_ratio: 0.1
71
+ - num_epochs: 10
72
+
73
+ ### Training results
74
+
75
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision | Sensitivity | Specificity |
76
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:-----------:|:-----------:|
77
+ | 0.3384 | 1.0 | 30 | 0.2387 | 0.9144 | 0.9163 | 0.9197 | 0.9146 | 0.9781 |
78
+ | 0.1608 | 2.0 | 60 | 0.1635 | 0.9466 | 0.9476 | 0.9485 | 0.9474 | 0.9865 |
79
+ | 0.0953 | 3.0 | 90 | 0.0915 | 0.9698 | 0.9703 | 0.9706 | 0.9706 | 0.9924 |
80
+ | 0.0573 | 4.0 | 120 | 0.1125 | 0.9607 | 0.9617 | 0.9634 | 0.9621 | 0.9901 |
81
+ | 0.0335 | 5.0 | 150 | 0.0536 | 0.9827 | 0.9831 | 0.9837 | 0.9826 | 0.9957 |
82
+ | 0.0185 | 6.0 | 180 | 0.0543 | 0.9827 | 0.9830 | 0.9837 | 0.9825 | 0.9957 |
83
+ | 0.0226 | 7.0 | 210 | 0.0478 | 0.9859 | 0.9861 | 0.9866 | 0.9856 | 0.9965 |
84
+ | 0.0131 | 8.0 | 240 | 0.0468 | 0.9843 | 0.9846 | 0.9847 | 0.9846 | 0.9961 |
85
+ | 0.0087 | 9.0 | 270 | 0.0411 | 0.9890 | 0.9892 | 0.9894 | 0.9891 | 0.9972 |
86
+ | 0.0043 | 10.0 | 300 | 0.0376 | 0.9886 | 0.9888 | 0.9890 | 0.9887 | 0.9971 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.30.2
92
+ - Pytorch 2.0.1+cu117
93
+ - Datasets 2.13.0
94
+ - Tokenizers 0.13.3