amjadfqs's picture
update model card README.md
1ab1f26
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded_02
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9822064056939501

swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded_02

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0588
  • Accuracy: 0.9822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0459 1.0 11 0.4734 0.8135
0.3898 2.0 22 0.2289 0.9189
0.2062 3.0 33 0.1297 0.9530
0.1218 4.0 44 0.0881 0.9673
0.0735 5.0 55 0.0879 0.9680
0.0659 6.0 66 0.0667 0.9765
0.05 7.0 77 0.0588 0.9822

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3